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Energy transport in one-dimensional chains of particles with three conservation laws is generically
anomalous and belongs to the Kardar-Parisi-Zhang dynamical universality class. Surprisingly, some
examples where an apparent normal heat diffusion is found over a large range of length scales were
reported. We propose a novel physical explanation of these intriguing observations. We develop a scaling
analysis that explains how this may happen in the vicinity of an integrable limit, such as, but not only, the
famous Toda model. In this limit, heat transport is mostly supplied by quasiparticles with a very large mean
free path l. Upon increasing the system size L, three different regimes can be observed: a ballistic one, an
intermediate diffusive range, and, eventually, the crossover to the anomalous (hydrodynamic) regime. Our
theoretical considerations are supported by numerical simulations of a gas of diatomic hard-point particles
for almost equal masses and of a weakly perturbed Toda chain. Finally, we discuss the case of the perturbed
harmonic chain, which exhibits a yet different scenario.
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After more than twenty years of theoretical research, there
is a general consensus that energy transport in one- and two-
dimensional systems is anomalous, meaning that Fourier’s
law is invalid [1–3]. Numerics [4–6] as well as hydro-
dynamic [7,8] and kinetic [9–11] theories consistently
indicate that the nonlinear interactions of fluctuations of
conserved quantities yield, in reduced space dimension,
nonstandard relaxation and transport properties, even in the
linear response regime. The main signature of the anomaly is
the divergence of the thermal conductivity κ with the system
size L, i.e., a superdiffusive heat transport. In one dimension,
although this is a genuine many-body problem, it can be
described effectively as an ensemble of Lévy particles;
namely, random walkers performing free ballistic steps with
finite velocity for times that are power-law distributed [12].
This description accounts quantitatively for several non-
equilibrium properties, both transient and stationary [6,
13–15]. Remarkably, the phenomenon was shown to belong
to the class of the famous Kardar-Parisi-Zhang (KPZ)
equation [16,17], suggesting a universal behavior with
implications for the theory of transport in nano-sized objects
like individual nanowires [18], nanotubes [19], or polymers
[20]. In this general context, nanowires and single-walled
nanotubes have been analyzed to look for deviations from
the standard Fourier’s law [19]. Experimental evidence of
such deviations has been reported for single-walled carbon
nanotubes [19,21] (see also Ref. [22]). Nontrivial length
dependence of thermal conductance has been also observed
in molecular chains [23]. Transport anomalies can be even

exploited to achieve optimal efficiency of thermal to electric
energy conversion [24,25].
Although the general framework is pretty well understood,

there are still open issues that escaped so far a convincing
explanation. For definiteness, we focus on anharmonic
chains, represented by a Hamiltonian of the form

H ¼
XL

n¼1

�
p2
n

2mn
þUðqnþ1 − qnÞ

�
; ð1Þ

where mn, qn, and pn are, respectively, the mass, displace-
ment, and momentum of the nth particle. For a generic
potentialU, this family ofmodels should show superdiffusive
heat transport in the KPZ universality class, as confirmed
by several studies [26,27]. However, there is evidence of
significant deviations of the dynamical exponents in some
models with hard-core potential [28]. Moreover, chains
allowing for bond dissociation (like, e.g., Lennard-Jones,
Morse, and Coulomb potentials) unexpectedly display finite
thermal conductivity [29,30], while other similar potentials
closely follow the prediction of anomalous scaling [31]. For
thedouble-well potential, an intermediate-energy regimewith
almost diffusive transport has been reported [32,33].
Another, more surprising feature is the (apparent) normal

diffusive heat transport observed at low energies in asym-
metric potentials [34] like the Fermi-Pasta-Ulam-Tsingou-
αβ (FPUT) chain, where mn ¼ m and UαβðyÞ ¼ y2=2þ
αy3=3þ βy4=4. Yet, more compelling evidence of a
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seemingly normal transport has been found in a Toda lattice
under the action of an additional conservative noise [35]
and in the diatomic hard point gas (HPG) [36] (see also
Ref. [37]). In the first context, successive studies showed
that the diffusive regime is a finite-size effect, whereby
anomalous behavior is recovered for large enough L
[38,39] (see also the discussion based on mode-coupling
arguments in Ref. [40]). The same is demonstrated in
Ref. [41] for a stochastic hard-core gas model.
In this Letter we present a general explanation of the

counterintuitive normal transport observed in several mod-
els. In a nutshell the argument runs as follows. The length-
independent flux exhibited by integrable systems is the
result of the free displacement of quasiparticles (the
integrals of motion, such as solitons) from the hot towards
the cold reservoir. In the vicinity of the integrable limit, as a
result of mutual interactions, the quasiparticles have a finite
mean free path l. Thereby, a purely ballistic behavior can
be observed only for L < l. On the other hand, L > l is
not a sufficient condition to observe a crossover towards the
anomalous behavior predicted by the above mentioned
theoretical arguments. In fact, it is necessary for L to be so
long that the normal flux induced by interparticle scattering
becomes negligible.
In more quantitative terms, building upon the intuition

contained in Ref. [42], we conjecture that the heat flux
JðL; εÞ is the sum of two terms,

JðL; εÞ ¼ JAðL; εÞ þ JNðL; εÞ; ð2Þ

where ε is the distance from the integrable limit, JA is the
hydrodynamic contribution, arising from the mutual inter-
action among density, energy, and momentum fluctuations,
and JN is a kinetic contribution, accounting for the energy
transported by the weakly interacting quasiparticles.
For L → ∞, JA ≈ Lη−1 with η ¼ 1=3 in systems belong-

ing to the KPZ class [16,17], while η ¼ 1=2 in some special
cases, like models with symmetric interaction potentials
[e.g., FPUT-β chain with potential UβðyÞ ¼ y2=2þ y4=4]
and models subject to conservative noise (e.g., the noisy
harmonic [42,43] or nonlinear [35,44] chains).
On the basis of standard kinetic arguments [45], JN is

expected to be a function of a single compound variable,
the effective length ξ ¼ L=l expressed in units of the mean
free path l, the only relevant scale in this context,

JNðL; εÞ ¼ jNðL=lÞ: ð3Þ

For ξ ≫ 1, we expect jNðξÞ ∝ 1=ξ, meaning that the flux is
the result of a standard diffusive process, while jNð0Þ is a
finite value, meaning that the process is ballistic for system
sizes smaller than the mean free path (ξ ≪ 1). The entire
jNðξÞ dependence is captured by the simple effective
formula

jNðξÞ ¼
j0

rþ ξ
; ð4Þ

where r is a constant accounting for the boundary resis-
tance [46] and j0 is an additional constant.
The vicinity to the integrable limit manifests itself as a

divergence of the mean free path, which we account for
by assuming l ≈ ε−θ, where θ > 0 is a system-dependent
exponent. As long as JAðL; εÞ does not display any
singularity for ε → 0 (we return to this point in the final
part of the Letter), we can neglect its dependence on ε (for
ε ≪ 1). Therefore, for large L, Eq. (2) can be rewritten as

JðL; εÞ ≈ cA
L1−η þ

cN
Lεθ

; ð5Þ

where cA and cN are two suitable parameters. Accordingly,
the anomalous contribution prevails only above the
crossover length lc ≈ ε−θ=η. For L ≤ lc, heat conduction
is dominated by jN. In particular, within the range
½l ¼ ε−θ;lc� an apparent normal conductivity is expected,
which is nothing but a finite size effect.
Now, we start the numerical analysis, focusing on

models of the class (1). More specifically, we shall consider
the HPG [47–49], and the Toda chain [50,51] with
interaction potential UTðyÞ ¼ ðe−y þ y − 1Þ.
The HPG dynamics consists of successive collisions

between neighboring particles according to the kinematic
rules

u0i ¼
mi −miþ1

mi þmiþ1

ui þ
2miþ1

mi þmiþ1

uiþ1;

u0iþ1 ¼
2mi

mi þmiþ1

ui −
mi −miþ1

mi þmiþ1

uiþ1; ð6Þ

where un ¼ _qn and the primed variables denote the values
after the collision. Simulations are very efficient since they
only require keeping track of the collisions [49].
For equal masses (mn ¼ m), both models are completely

integrable: in the HPG, the constants of motion are the
initial velocities, while in the Toda model the conserved
actions are given functions of positions and momenta
[52,53]. Both models can be seen as gases of quasiparticles:
velocitons for HPG [54] and solitons for Toda [50].
Transport is ballistic: κðLÞ is proportional to L and the
energy-current correlation function does not decay to zero
at large times [55,56]. Note that, according to the classi-
fication of Ref. [57], the two models are noninteracting and
interacting, respectively.
Here we consider two different ways of breaking integra-

bility (i.e., to induce interactions among the quasiparticles):
(i) different masses, such as a diatomic arrangement whereby
mn ¼ m1 ¼ ðM=2Þð1 − δÞ [mn ¼ m2 ¼ ðM=2Þð1þ δÞ] for
odd (even) n [47–49]; (ii) a conservative noise through
random collisions exchanging the momenta of neighboring
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particles at a given rate γ [35] (see also a related model in
Ref. [58]). In the former (latter) case δ (γ) plays the role of the
above-mentioned closeness parameter ε. In either case, only
three conservation laws survive: momentum, energy, and
stretch, yielding anomalous transport and dynamical scaling
[59]. For large enough δ values, there is overwhelming
evidence that both the diatomic HPG and Toda [48] belong
to the KPZ universality class. For the randomly perturbed
Toda chain, evidence of a diverging conductivity is solid with
η ≈ 0.44 for the large collision rate γ ¼ 1 [35].
Here, we are interested in the quasi-integrable regime,

δ; γ ≪ 1. The first issue is the determination of the mean
free path l. In the HPG with a diatomic mass arrangement,
l corresponds to the average space traveled by a single
velociton before the collisions induce a sizable change of its
original velocity. Given the mass arrangement, the collision
types ðm1; m2Þ and ðm2; m1Þ alternate and it is thereby
appropriate to look at velocity changes every second iterate
(u → u0 → u00). From Eq. (6),

u00 ¼ ð1 − δÞu0 þ δχ2 ¼ ð1 − δ2Þuþ δðχ2 − χ1Þ þ δ2χ1;

ð7Þ

where χ1;2 denote the velocities of the quasiparticles
encountered by the velociton u, hereby assumed to be
uncorrelated Gaussian variables with zero average and
variance hχ21;2i ¼ v2 (neglecting the mass difference
between the two particles). To leading order in δ, the
map can be turned into the stochastic differential equation

_u ¼ −δ2uþ
ffiffiffi
2

p
δvζ;

where ζ is a unit-variance white noise, while time is
measured in 2τ units, where τ is the average collision
time. As a result, u diffuses, its variance growing initially
as Du ¼ 2δ2v2t, so that the time needed for Du to be
approximately equal to v2 is t ≈ τ=δ2 (in physical time
units) and the corresponding mean free path is l ≈ vτ=δ2.
In other words, we expect θ ¼ 2.
Numerical results have been obtained by implementing

the standard nonequilibrium procedure [1,2]. Left and right
edges are attached to Maxwellian heat baths at temper-
atures TL ¼ 6 and TR ¼ 4 (ΔT ¼ TL − TR) and the flux J
determined from the average energy exchanged in the
steady state. For the HPG we employ the thermal-wall
method as detailed, e.g., in Ref. [36].
In Fig. 1(a) we plot the rescaled thermal conductivity

δ2κ of the diatomic HPG, referred to the effective length
ξ ¼ Lδ2 [62] (the various curves correspond to different δ
values—δ decreases from top to bottom). There is clear
evidence of a ballistic regime followed by a diffusive one,
as accounted for by Eq. (3). For the smaller δ’s, Fourier-like
transport persists up to the maximal available L, while a
crossover to the anomalous regime is seen upon increasing

δ (see the uppermost curve). Upon decreasing δ, the curves
converge from above towards an asymptotic shape,
κN ¼ jNðξÞξ=ΔT. In fact, for δ → 0 and fixed ξ, L
increases (L ¼ ξ=δ2), so that the corresponding JAðLÞ
contribution becomes increasingly negligible.
Then, jN is estimated from the data for the smallest

perturbation amplitude (since JA is practically negligible
over the explored length range). The simple formula (4)
proves remarkably accurate: see the solid upper curve in
Fig. 2, to be compared with the circles, which represent the
numerical HPG results.
As a second test, we consider the diatomic Toda model

[36]. For large energy densities, most of its dynamical
properties are basically equal to the HPG [63] and we thus
expect again l ≈ δ−2, i.e., θ ¼ 2. At lower energies, one
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FIG. 1. Nonequilibrum simulations: scaled thermal conduc-
tivity versus scaled chain lengths for (a) the HPG model TL ¼
6; TR ¼ 4 M ¼ 1 δ ¼ 0.05; 0.07; 0.10; 0.14; 0.2 from bottom to
top; (b) the diatomic Toda model (data taken from Ref. [36],
Fig. 4) δ ¼ 0.07; 0.10; 0.14; 0.22; 0.30; 0.50; 1.0 from bottom
to top; and (c) the Toda model with conserving noise γ ¼
0.005; 0.01; 0.02; 0.04; 0.08; 0.16 from bottom to top.
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should estimate the soliton scattering rates due to mass
inhomogeneities; however, there is no reason to expect a
different scaling behavior. Indeed, the typical thermal-
ization time is of order δ−2 in a wide energy range [64].
The conductivities taken from Ref. [36], are reported in
Fig. 1(b) after a proper rescaling. The data collapse
confirms the validity of our arguments.
Finally, we have considered the Toda model with

conservative noise. In this case, it is natural to argue that
the mean free path scales as the inverse of the collision rate,
l ∼ γ−1. This intuition is confirmed by the data reported in
Fig. 1(c), where we observe the same scenario as for the
previous models, after setting θ ¼ 1. For small γ, jN
converges again towards a function, which asymptotically
decays as 1=ξ. However, the heuristic formula (4) is not
comparably accurate: it is necessary to add a correction
term to reproduce the observed data, as shown in Fig. 2 (see
triangles vs the corresponding solid curve).
So far we have tested the structure of the first addendum in

Eq. (2) by studying a regime where the second contribution
is negligible. What about the second addendum? Once jN
has been determined, one can proceed by estimating the
anomalous component as JAðLÞ ¼ JðL; εÞ − jNðLεθÞ. The
data in Fig. 3 indicates that JA exhibits the expected
anomalous scaling already for system sizes where the direct
estimates are strongly affected by the diffusive component.
For the HPG the fitted slope, about −0.66, corresponds to
η ¼ 0.33, in excellent agreement with the KPZ prediction
η ¼ 1=3. For Toda we obtain η ¼ 0.52, consistent with
Ref. [35] and even closer to η ¼ 1=2, the value rigorously
proven for harmonic models with momentum-conserving
noise [42–44]. We thus conclude that the measurements
confirm the above proposed crossover from diffusive to
hydrodynamic behavior.

The same scenario is expected to emerge in the presence
of a generic momentum-conserving perturbation εWðyÞ of
the potential of the Toda chain. In fact, in this case, it has
been already noticed that the energy-flux correlation decays
over a timescale inversely proportional to a power of ε [56].
More in general, we argue that the crossover from

normal to anomalous regimes of the FPUT − αβ model
[38,39] is fully accounted for by the above described
scenario. Indeed, the FPUT − αβ (at low enough energies)
can be regarded as a perturbed Toda chain over very long
timescales, on which the Toda actions are only weakly
perturbed [65]. We reckon that other potentials should
display the same phenomenology, if their form is “close
enough” to UT .
What can we say about the simplest model of a perturbed

harmonic chain? This textbook case deserves a special
consideration. Numerical analysis of the FPUT − β model
at very low energy, i.e., below the strong stochasticity
threshold, does not reveal any signature of an intermediate
diffusive regime, but rather a direct crossover from ballistic
to anomalous regimes [66]. More compelling evidence of
the absence of a diffusive regime comes from the study of
the harmonic chain with conservative noise [43] in the limit
of vanishing noise, i.e., γ → 0. It has been found analyti-
cally [42] and confirmed numerically [67] that JAðL; εÞ,
exhibits a singular dependence for ε → 0 (here γ → 0) in
the form of a divergence of the coefficient cA in Eq. (5),
cA ≈ γ−1=2, which implies that JA prevails over JN for any
value of L.
Hence, the different behavior displayed by weakly

perturbed harmonic oscillators can be traced back to a
divergence of the anomalous component, which is itself a
consequence of the nonlinearity of the dynamical equa-
tions. This counterintuitive phenomenon reminds us that
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FIG. 2. Estimates of dependence of the normal component
JNðLÞ of the energy flux, as defined by Eq. (3), versus the
rescaled system length L. Solid circles are for the HPG model
with mass parameter δ ¼ 0.05 and triangles for the Toda with
random collisions γ ¼ 0.005. The solid lines are best fit with
the functions 6.18=ð3.73þ ξÞ and 1=ð27.0þ 5.62ξþ 7.87ξ0.2Þ,
respectively.
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FIG. 3. The anomalous part of the energy flux versus the
system length L calculated as JA ¼ JðLÞ − JNðLÞ with JN as
determined in the previous figure. HPG model with δ ¼ 0.14
(squares) and δ ¼ 0.20 (circles) and for Toda with conservative
noise γ ¼ 0.04 (triangles). The dashed lines are a power-law fit on
the largest sizes where scaling sets in (values given in the text).
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Eq. (2) is a conjecture, which still requires a rigorous
derivation. Nevertheless, the successful implementation of
our scaling arguments provides a convincing explanation of
the seemingly normal diffusion observed not only in
Refs. [35–37], used as our test beds, but also in many
nonlinear chains like those discussed in Refs. [38,39] where
the potential is “well approximated” by the Toda one.
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