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We introduce the asymmetric extension of the quantum symmetric simple exclusion process which is a
stochastic model of fermions on a lattice hopping with random amplitudes. In this setting, we analytically
show that the time-integrated current of fermions defines a height field that exhibits quantum nonlinear
stochastic Kardar-Parisi-Zhang dynamics. Similarly to classical simple exclusion processes, we further
introduce the discrete Cole-Hopf (or Gärtner) transform of the height field that satisfies a quantum version
of the stochastic heat equation. Finally, we investigate the limit of the height field theory in the continuum
under the celebrated Kardar-Parisi-Zhang scaling and the regime of almost-commuting quantum noise.
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Random unitary dynamics arise in quantum mechanics as
an efficient way of describing the evolution of systems
interacting with environments or external fields. The original
idea was introduced by Caldeira and Leggett to study the
effective dynamics of collections of spins interacting with
bosonic baths [1]. The properties of such systems are
expected to notably differ from their isolated counterparts
due to fluctuation and dissipation arising from interactions
with unknown degrees of freedom. Random unitary dynam-
ics are also useful to study typical and universal behaviors of
quantum chaotic systems. As a consequence, their studies
has been recently revitalized, notably in the context
of random unitary circuits [2–9], or many body systems
[10–16]. By adding stochasticity, these systems ought to lose
their fine properties pertaining to particularities, such as
conservation laws, thus allowing the emergence of generic
properties. These include the production of entanglement
[2,4,17–24], the scrambling of information [3,6,25,26], or
the spreading of operators [5,7,8] in systems converging to
thermal or out-of-equilibrium steady states. In particular, in
some quantum stochastic models [4,14,15,19], it has been
argued that the growth and fluctuations of the entanglement
entropies are governed by the Kardar-Parisi-Zhang (KPZ)
equation [27–33]. Large deviation fluctuations for the
growth of entanglement in stochastic conformal field theo-
ries have been shown to belong to the KPZ class [34]. Some
scaling features of the KPZ equation have also recently been
found in super-diffusive nonstochastic spin chain models
[35–38] for the long-time decay of the spin-spin correlation
functions. The extent by which the KPZ-like behavior
is universal in quantum many-body systems is an open
question.

A model describing stochastic hoppings of fermions on a
lattice, which can be seen as a continuous-timeversion of the
random unitary circuit models, has recently been introduced
[12,39,40]. The average dynamics of such quantum model
reduces to the classical symmetric simple exclusion process
(SSEP) [40], a well-known model of out-of-equilibrium
classical statistical physics.One remarkable result of [39,40]
consisted in showing that, beyond the decoherence effects
at work in the mean dynamics, quantum coherences and
hence entanglement patterns have a rich structure in such
models. In this Letter, we extend these results to asymmetric
processes by introducing an asymmetric version of the
quantum SSEP model and deciphering its connection with
both the classical asymmetric simple exclusion process
(ASEP) and the classical or quantum KPZ equation. This
hence provides one theoretical example of direct appearance
of the KPZ physics in quantum spin chains. Since, classi-
cally, symmetric and asymmetric models do not belong to
the same universality class, we expect that, in the quantum
world, a similar statement will hold.
The connection between the quantum ASEP defined

below, Eqs. (1) and (2), and the KPZ dynamics will be
developed along different angles. First, we will show that
the average dynamics of the model is described by the
classical ASEP. Then, we will show how the time-integrated
current of fermions follows a quantum stochastic dynamics,
akin to the classical KPZ one. This connection is realized in
three differentmanners: bymapping the spin chain dynamics
to a quantum discrete version of the KPZ equation, Eqs. (5),
or to a quantum analog of the stochastic discrete heat
equation (SHE), Eqs. (8), or to a quantum version of the
stochastic Burgers equation, Eq. (10). In all these instances,
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the noise keeps its quantum character and depends on off-
diagonal quantum coherences. Since the classical ASEP and
its scaling limit are at the root of the macroscopic fluctuation
theory (MFT) [41], which is an effective theory coding for
large deviation fluctuations in diffusive out-of-equilibrium
classical systems, the quantum ASEP [(1), (2)] and its
mapping to the quantum KPZ dynamics open the route
towards the extension of theMFT to quantum coherence and
entanglement fluctuations in quantum many body systems.
The model.—We consider an asymmetric extension of

the quantum SSEP [39]. It describes fermions on a lattice
undergoing hopping between nearest-neighbor with ran-
dom amplitudes. In the Heisenberg picture, the infinitesi-
mal stochastic Hamiltonian generating the flow on
observables Ôt ↦ Ôtþdt ¼ eidHtÔte−idHt is given by

dHt ¼
Xþ∞

j¼−∞
½c†jþ1cjdW

j
t þ c†jcjþ1dW̄

j
t �; ð1Þ

where ðc†j ; cjÞ are fermionic creation and annihilation oper-
ators acting at site j with anticommutation relations
fc†j ; cig ¼ δij and ðdWj

t ; dW̄
j
tÞ are quantum noises, attached

to the edges, see Fig. 1. Quantum noises are operators acting
on the Hilbert space of the reservoir, with canonical
equal-time commutation relations ½dWj

t ; dW̄k
t � ¼ δjkdt.

Physically, they represent operators in the interaction picture
creating and annihilating excitations in a bosonic reservoir.
We define the stochastic average E½·� as the trace over the
degrees of freedom of the bath. Within stochastic averages,
thenoise satisfies theso-calledquantumItô rulesdW̄j

tdWk
t ¼

δjkαdt and dWk
t dW̄

j
t ¼ δjkð1þ αÞdt where α is the average

number of excitations in the bath, and E½dWj
t � ¼

E½dW̄j
t � ¼ 0. Our model further assumes that the noise is

Markovian in the sense that there is no memory effect due to
the large number of degrees of freedom of the bath: this
implies dW̄j

tdWk
t0 ¼ dWk

t0dW̄
j
t ¼ 0 for t ≠ t0. We refer the

reader to [42–45] for more details on quantum noise.
The equation of motion of an operator Ô follows from

expanding the flow (1) of Ôt [46],

dÔt ¼ ½L�
TASEPðÔtÞ þ αL�

SSEPðÔtÞ�dt

þ i
Xþ∞

j¼−∞
½c†jþ1cjdW

j
t þ c†jcjþ1dW̄

j
t ; Ôt�: ð2Þ

The superoperators are here given by L�
TASEPð⋆Þ¼Pþ∞

j¼−∞½c†jþ1cj⋆c†jcjþ1−1
2
fð1−n̂jÞn̂jþ1;⋆g� andL�

SSEPð⋆Þ¼Pþ∞
j¼−∞½c†jcjþ1⋆c†jþ1cjþc†jþ1cj⋆c†jcjþ1 −1

2
fn̂jð1−n̂jþ1Þ þ

ð1−n̂jÞn̂jþ1;⋆g�. The notation f; g stands for the anticom-
mutator and n̂j is the local density c†jcj. The superscript

�

denotes the fact that we are dealing with the dual of a
Lindbladian on the operator space and we will explain the
meaning of the subscript in the following. As an example,

the dual Linbladians evaluated on the number operator n̂k
yield

L�
TASEPðn̂kÞ ¼ n̂kþ1ð1 − n̂kÞ − n̂kð1 − n̂k−1Þ;
L�
SSEPðn̂kÞ ¼ ðn̂kþ1 − n̂kÞ − ðn̂k − n̂k−1Þ: ð3Þ

The form of these equations echoes the fermion number
conservation, which leads to the local continuity equation,
dn̂k ¼ ðjkdtþ dBk

t Þ − ðjk−1dtþ dBk−1
t Þ, with noise

dBk
t ¼ i½c†kþ1ckdW

k
t − c†kckþ1dW̄k

t �; ð4Þ

and current jk ¼ ½n̂kþ1ð1 − n̂kÞ þ αðn̂kþ1 − n̂kÞ�.
Correspondence to the ASEP.—The averaged dynamics

of this model can be linked to classical exclusion processes.
Let us define pointer states as elements of the form
P½ϵ� ¼

Q⊗
j Pϵi

j with ϵ≡ fϵjg, ϵj ∈ f�g and Pþ
j ¼ c†jcj,

P− ¼ ðI − c†jcjÞ. To each pointer state, one associates a
classical state such that Pþ

j (P−
j ) corresponds to an

occupied state (empty state) at site j which we denote
j•j (j∘j). The operators P½ϵ� are mapped onto each
others by the generator of the mean evolution:
E½LðP½ϵ�Þ� ¼

P
ϵ0 Q½ϵ0�P½ϵ0�. Starting from a diagonal den-

sity matrix ρ0 ¼
P

ϵ Q0½ϵ�P½ϵ�, the dynamics leaves the
density matrix ρt diagonal on average and the weightsQt½ϵ�
at time t can be associated to the classical probability
amplitude for the system to be in the configuration ϵ. The
master equation satisfied by the weights Qt can be found
upon evaluation of the action of the Lindbladians on a pair
of adjacent sites:

LSSEPðj• ∘jÞ ¼ −j• ∘j þ j∘ •j;
LSSEPðj∘ •jÞ ¼ −j∘ •j þ j• ∘j;

LTASEPðj• ∘jÞ ¼ 0;

LTASEPðj∘ •jÞ ¼ −j∘ •j þ j• ∘j:

Both operators return zero upon acting on the states j∘ ∘j and
j• •j since there is no particle or the exclusion freezes the
dynamics. The transition rates are equal to the ones of
the corresponding classical processes:LSSEP corresponds to
the symmetric simple exclusion process and LTASEP to the
totally asymmetric one. We emphasize that these statements

FIG. 1. Representation of the lattice and the hopping process. A
fermion can jump to the right (to the left) with probability per unit
time dWt (dW̄t). These amplitudes correspond to an effective
interaction with a bosonic bath.
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are true if we restrict ourselves to the average evolution and
to pointer states initial conditions. The quantum model
embraces more general situations where quantum coher-
ences play a key role [39,40]. At a large scale, the ASEP is
known to converge towards the KPZ growth model under a
weak asymmetry: we now show that a similar statement
holds for the quantum case.
The Kardar-Parisi-Zhang quantum height.—Let us

recall that the classical Kardar-Parisi-Zhang dynamics is
described by a trio of equations: the KPZ equation, the
stochastic heat equation, and the stochastic Burgers equa-
tion. Our task consists in unveiling their quantum counter-
part in the context of our model. Let ñj ≡ nj − 1

2
be the

centered local density and ĥk ≡P
k
j¼−∞ ñj be the cumu-

lated fermion number, or identically the time-integrated
current of fermions [47], to which we refer as the quantum
height field [48]. In classical exclusion processes, the
height growth is related to the so-called corner growth
process consisting in the growth of an interface from its
corners, transforming local minima (maxima) onto local
maxima (minima) whenever a particle passes through the
corresponding site, see Fig. 2.
From now on and for convenience, we introduce the

forwards gradient of the height as ∇þĥk ¼ ĥkþ1 − ĥk, its
backwards gradient as ∇−ĥk ¼ ĥk − ĥk−1 and the discrete
Laplacian as Δ ¼ ∇þ∇−. From Eq. (2) or from the
summation of the evolution of the number operators n̂j,
we obtain the exact dynamics of the height as

dĥk ¼
��

αþ 1

2

�
Δĥk −∇þĥk∇−ĥk þ

1

4

�
dtþ dBk

t : ð5Þ

Equation (5) plays the role of a discretized quantum KPZ
equation. Note that the nonlinearity is a direct consequence
of the noncommutativity of the noise. We emphasize that
the noise term depends on off-diagonal observables with
respect to the occupation number basis: therefore the
fluctuations of the height, contrary to the classical case,

is strongly dependent on the existence of quantum coher-
ences. Note also that the deterministic part of Eq. (5)
comprises a nonlinear term rendering the equation intrinsi-
cally difficult to solve and the correlator of the noise
depends on the height as

dBk
t dBk0

t ¼ δkk0

�
1

2
Δĥk þ

�
αþ 1

2

��
1

2
− 2∇þĥk∇−ĥk

��
dt:

ð6Þ

To further study the model, let us remark that there is a

miracle: defining the operator Ẑk ≡ eδĥk with a suitable
choice of parameter δ makes the dynamics of Ẑ linear. This
transformation is similar to the so-called discrete Cole-
Hopf (or Gärtner) change of variable for classical models
[50–52] and for this reason we will refer to Ẑ as the
quantum Cole-Hopf operator. From Eqs. (2) and (5), the
evolution of the Cole-Hopf operator [53] is

dẐk ¼ ½ð1þ αÞð1 − n̂kÞn̂kþ1eδ=2 − αn̂kð1 − n̂kþ1Þe−δ=2�

× 2 sinh

�
δ

2

�
Ẑkdtþ 2 sinh

�
δ

2

�
dBk;ð−Þ

t Ẑk; ð7Þ

where we further introduced the decorated noise dBk;ð�Þ
t ¼

i½e�δ=2c†kþ1ckdW
k
t − e∓δ=2c†kckþ1dW̄k

t �. Equation (7) re-
mains nonlinear in the number operators for an arbitrary
value of δ, but a wise choice allows us to cancel the
nonlinearity: δ ¼ log½α=ð1þ αÞ�. Fixing this value, the
evolution of the Cole-Hopf operator is simplified to

dẐk ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðαþ 1Þ

p
ΔẐk − ð ffiffiffiffiffiffiffiffiffiffiffi

αþ 1
p

−
ffiffiffi
α

p Þ2Ẑk�dt

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðαþ 1Þp dBk;ð−Þ
t Ẑk: ð8Þ

The constant drift can be absorbed by redefining the Cole-
Hopf operator as Z̃k ≡ eμtẐk with μ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi

αþ 1
p

−
ffiffiffi
α

p Þ2.
This amounts to shift the height field in another frame in
translation with the original one [54]. Going from Eq. (5) to
Eq. (8), we traded a nonlinear equation and an additive
noise with a linear equation with a multiplicative noise.
Remark the mechanisms making our Cole-Hopf transform
work rely on the operator’s algebra making it a nontrivial
quantum feature. Since it describes a diffusion on Z, the
stochastic averaged dynamics of the Cole-Hopf operator Z̃k
can be computed exactly [55],

E½Z̃kðtÞ� ¼
X
l∈Z

Ik−l½2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðαþ 1Þ

p
�e−2t

ffiffiffiffiffiffiffiffiffiffiffi
αð1þαÞ

p
Z̃lð0Þ; ð9Þ

where I is the modified Bessel function of the first kind
[56]. We emphasize that Eq. (9) is operator valued since the
trace over the fermionic degrees of freedom has not been

FIG. 2. Mapping from the particle picture to the height field.
Bottom. Particles hop on the lattice and the occupied sites are
black filled. Top. The configuration of particles is represented by
an interface incremented with the presence of a particle at the
corresponding site. The particle transport maps to a corner growth
process: if a particle hops to the left (to the right), a corner is
raised (lowered).
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taken. Finally, the third equation of the trio is obtained
readily. Indeed, the backwards gradient of the quantum
height field, ñk ¼ ∇−ĥk verifies a quantum discrete viscous
stochastic Burgers equation

dñkþ ñkð∇þþ∇−Þñkdt¼
�
αþ1

2

�
Δñkdtþ∇−dBk

t : ð10Þ

Due to the linear time growth of the height, it is classically
more convenient to study the stochastic Burgers equation
to obtain stationary measures in the KPZ physics. We
expect the same phenomenon to remain valid in the
quantum realm. Now that we have unveiled the trio of
equation governing the KPZ physics, let us turn to the
introduction of quantum replica and to the continuous field
theory limit.
Quantum replica.—A possible direction to study the

stochastic heat equation is by the means of the replica
method pioneered by Kardar in [57]. We propose in this
Letter to extend it to our quantum model. To this aim, we
define the equal-time nth quantum replica as uðk1;…;knÞ¼Q

n
l¼1 Z̃kl , [58], which evolution can be derived from the Itô

rules and the discrete SHE (8) as

∂tE½u� ¼ E

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðαþ 1Þ

p Xn
l¼1

Δluþ
X
l<m

Vkl;kmu

�
: ð11Þ

The potential V is given by the correlator of the noise

Vkl;km ¼ 1

αðαþ 1Þ
dBkl;ðþÞ

t dBkm;ð−Þ
t

dt
;

¼ δkmkl

�ð1 − n̂kmÞn̂kmþ1

1þ α
þ n̂kmð1 − n̂kmþ1Þ

α

�
: ð12Þ

Equation (11) describes an imaginary-time Schrödinger
equation on a lattice acting on a space of operators and
shares some strong similarities with the δ-Bose gas or the
Lieb-Linigermodel [59,60]. Indeed, the potentialVkl;km is an
attractive contact interaction and since all operators Zkl
commute, uðk1;…; knÞ is invariant by permutation of the ks
and therefore each replica can be interpreted as a bosonic
particle. The Lieb-Liniger model is solvable using the Bethe
ansatz [61], it would be of interest to develop an extension of
this ansatz for Eq. (11).We leave the development of such an
ansatz for a future work.
Limit to the continuum.—So far, our quantum model was

considered on an infinite lattice. To investigate its
large scale properties, we propose to probe its limit in
the continuum in a similar fashion as for the classical
exclusion processes [52]. We will show that in a regime
that we call the almost-commuting quantum noise regime
and in the (1∶2∶3) KPZ scaling limit, the continuous
version of Eq. (5) is a quantum version of the continuous

Kardar-Parisi-Zhang equation. The (1∶2∶3) KPZ scaling
[62] refers to the following (height:space:time) scaling

fĥ≡ ε−1h̃; k≡ bε−2xc; t≡ ε−3t̃g: ð13Þ

In addition, the almost-commuting quantum noise regime
is defined as the limit of an almost infinite number of
excitations in the bosonic bath α≡ ε−1α0. Both regimes are
then considered in the limit ε → 0. At leading order in ε,
the (1∶2∶3) scaling leads to the following minimal replace-
ments Δh → ε3∂xxh̃, ∇h → ε∂xh̃, and δkk0 → ε2δðx − x0Þ.
The equation of evolution of the quantum height (5) is then
transformed onto

dh̃ ¼
�
α0∂xxh̃ − ð∂xh̃Þ2 þ

1

4ε2

�
dt̃þ dBx

t̃ ; ð14Þ

where the noise in continuum is defined as dBx
t̃ ≡

limε→0 εdBk
t . The correlator of the noise in the continuum

is purely classical at leading order in ε,

dBx
t̃ dB

x0
t̃ →
ε→0

δðx − x0Þ α0
2
dt̃: ð15Þ

Equation (14) is extremely similar to the classical KPZ
equation although being operator valued. Similarly to what
happens classically [52], since we expect the quantum
interface described by the height h̃ to be rough, the ε−2

divergence in (14) is not surprising: one needs to renorm-
alize the field by the addition of a correction term t=4ε2 to
obtain a well-defined theory. It is remarkable that the
quantum character of the noise disappears in the continuum
limit, see Eq. (15). Nonetheless, note that the nonlinearity
remains relevant: since it originated from the noncommu-
tativity of the quantum noise, this is an evidence that the
model conserves some quantum properties on large scales.
The discrete SHE (8) and the discrete Burgers equation (10)
converge in the same fashion to the continuous SHE and
stochastic Burgers equation.
There exists a number of analytic results concerning the

classical KPZ equation in 1þ 1 dimensions. Explicit
solutions have been found for a variety of initial conditions
[63–76], it would be interesting to know whether these
admit an analog in the quantum case. Furthermore, the
classical stochastic Burgers equation admits a Gaussian
stationary measure [68,77] with the correlator given on the
r.h.s. of (16). This hints at the existence of a stationary
measure in the quantum case with a correlator for
the quantum height gradient ∂xh̃ (or equivalently the
fermion density-density correlator) given by the classical
correlator

E½h∂xh̃ð0; 0Þ∂xh̃ðx; t̃Þi� ∼
1

t̃2=3
fKPZ

�
x

2t̃2=3

�
; ð16Þ
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where fKPZ was calculated in [68,77]. An important
question at this stage would be to investigate the stationary
measure of the quantum Burgers equation. We leave this for
a future work.
Discussion and outlook.—In this Letter, we have intro-

duced a quantum asymmetric simple exclusion process
and identified a quantum growing interface ĥðtÞ sharing
strong similarities with a classical counterpart: the Kardar-
Parisi-Zhang height. The KPZ physics is classically
described by a trio of equations: the KPZ equation itself,
the stochastic Burgers equation and the stochastic heat
equation and we have established here the existence of
their quantum counterpart both in the discrete and the
continuous settings. This model provides one analytic
example of the presence of the KPZ physics in a quantum
model and we hope it will stimulate the community and
help bridge the gap between classical and quantum out-of-
equilibrium physics.
This model raises a number of questions. From a

technical point of view it would be interesting to pursue
the study of the moments of the Cole-Hopf operator and to
investigate the full counting statistics and the entanglement
entropy. The results [40] about quantum SSEP seems to
point to an underlying integrable structure. Understanding
better the role of the off-diagonal quantum coherences
would be important. It would also be interesting to obtain
the stationary measure of the theory.
This model questions the existence of a quantum KPZ-

like universality class. In the classical KPZ physics, there
are two major results concerning universality. The first one
is the strong universality which states that for growth
models with a fixed asymmetry, there exists a fixed-point at
large time [78–80], which describes among other quantities
the one-point fluctuations of the height with the celebrated
1=3 exponent hðtÞ ∼ v∞tþ t1=3χ, where v∞ is the average
velocity of the interface and χ is a random variable. The
second result is the weak universality [81] that asserts that
the KPZ equation is the universal scaling limit of weakly
asymmetric growth models under the (1∶2∶3) scaling (13).
Extending these results to the quantum realm is one
challenge that could shed some new light on quantum
out-of-equilibrium problems.
Finally, solving the SSEP and ASEP models have been

instrumental in the formulation of the MFT [41]. We may
expect that solving their quantum versions introduced in the
Letter will play an analogue role in the formulation of a
quantum extension of the MFT, aiming at describing
quantum coherence and entanglement fluctuations in out-
of-equilibrium quantum many body systems and completing
the recently emerging membrane picture [18,19,22,23] for
entanglement production in many-body systems.
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helpful discussions. A. K. acknowledges support from the

ANR Grant No. ANR-17-CE30-0027-01 RaMaTraF and
from ERC under Consolidator Grant No. 771536 (NEMO).
T. J. acknowledges support from the Swiss National
Science Foundation, Division II.

*zizhuo.jin@unige.ch
†alexandre.krajenbrink@sissa.it
‡denis.bernard@ens.fr

[1] A. O. Caldeira and A. J. Leggett, Path integral approach
to quantum Brownian motion, Physica 121A, 587
(1983).

[2] A. Hamma, S. Santra, and P. Zanardi, Quantum Entangle-
ment in Random Physical States, Phys. Rev. Lett. 109,
040502 (2012).

[3] F. Brandao, A. Harrow, and M. Horodecki, Local random
quantum circuits are approximate polynomial-designs,
Commun. Math. Phys. 346, 397 (2016).

[4] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum
Entanglement Growth Under Random Unitary Dynamics,
Phys. Rev. X 7, 031016 (2017).

[5] A. Nahum, S. Vijay, and J. Haah, Operator Spreading in
Random Unitary Circuits, Phys. Rev. X 8, 021014
(2018).

[6] A. Chan, A. De Luca, and J. T. Chalker, Solution of a
Minimal Model of Many-Body Quantum Chaos, Phys. Rev.
X 8, 041019 (2018).

[7] C. W. von Keyserlingk, T. Rakovszky, F. Pollmann, and
S. L. Sondhi, Operator Hydrodynamics, OTOCs, and
Entanglement Growth in Systems without Conservation
Laws, Phys. Rev. X 8, 021013 (2018).

[8] T. Rakovszky, F. Pollmann, and C.W. von Keyserlingk,
Diffusive Hydrodynamics of Out-of-Time-Ordered
Correlators with Charge Conservation, Phys. Rev. X 8,
031058 (2018).

[9] A. Chan, A. De Luca, and J. T. Chalker, Spectral statistics in
spatially extended chaotic quantum many-body systems,
Phys. Rev. Lett. 121, 060601 (2018).

[10] M. Kulkarni and A. Lamacraft, From GPE to KPZ: Finite
temperature dynamical structure factor of the 1D Bose gas,
Phys. Rev. A 88, 021603(R) (2013).

[11] E. Onorati, O. Buerschaper, M. Kliesch, W. Brown, A. H.
Werner, and J. Eisert, Mixing properties of stochastic
quantum Hamiltonians, Commun. Math. Phys. 355, 905
(2017).

[12] M. Bauer, D. Bernard, and T. Jin, Stochastic dissipative
quantum spin chain (I): Quantum fluctuating discrete
hydrodynamics, SciPost Phys. 3, 033 (2017).

[13] F. Carollo, J. Garrahan, I. Lesanovsky, and C. Perez-
Espigares, Fluctuating hydrodynamics, current fluctuations,
and hyperuniformity in boundary-driven open quantum
chains, Phys. Rev. E 96, 052118 (2017).

[14] M. Knap, Entanglement production and information scram-
bling in a noisy spin system, Phys. Rev. B 98, 184416
(2018).

[15] D. A. Rowlands and A. Lamacraft, Noisy coupled qubits:
Operator spreading and the Fredrickson-Andersen model,
Phys. Rev. B 98, 195125 (2018).

PHYSICAL REVIEW LETTERS 125, 040603 (2020)

040603-5

https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1103/PhysRevLett.109.040502
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.041019
https://doi.org/10.1103/PhysRevX.8.021013
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevX.8.031058
https://doi.org/10.1103/PhysRevLett.121.060601
https://doi.org/10.1103/PhysRevA.88.021603
https://doi.org/10.1007/s00220-017-2950-6
https://doi.org/10.1007/s00220-017-2950-6
https://doi.org/10.21468/SciPostPhys.3.5.033
https://doi.org/10.1103/PhysRevE.96.052118
https://doi.org/10.1103/PhysRevB.98.184416
https://doi.org/10.1103/PhysRevB.98.184416
https://doi.org/10.1103/PhysRevB.98.195125


[16] X. Cao, A. Tilloy, and A. De Luca, Entanglement in a
fermion chain under continuous monitoring, SciPost Phys.
7, 24 (2019).

[17] C. Jonay, D. A. Huse, and A. Nahum, Coarse-grained
dynamics of operator and state entanglement, arXiv:
1803.00089.

[18] M. Mezei, Membrane theory of entanglement dynamics
from holography, Phys. Rev. D 98, 106025 (2018).

[19] T. Zhou and A. Nahum, Emergent statistical mechanics of
entanglement in random unitary circuits, Phys. Rev. B 99,
174205 (2019).
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