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Long-range interacting spin systems are ubiquitous in physics and exhibit a variety of ground-state
disorder-to-order phase transitions. We consider a prototype of infinite-range interacting models known as
the Lipkin-Meshkov-Glick model describing the collective interaction of N spins and investigate the
dynamical properties of fluctuations and correlations after a sudden quench of the Hamiltonian.
Specifically, we focus on critical quenches, where the initial state and/or the postquench Hamiltonian
are critical. Depending on the type of quench, we identify three distinct behaviors where both the short-time
dynamics and the stationary state at long times are effectively thermal, quantum, and genuinely
nonequilibrium, characterized by distinct universality classes and static and dynamical critical exponents.
These behaviors can be identified by an infrared effective temperature that is finite, zero, and infinite (the
latter scaling with the system size as N1=3), respectively. The quench dynamics is studied through a
combination of exact numerics and analytical calculations utilizing the nonequilibrium Keldysh field
theory. Our results are amenable to realization in experiments with trapped-ion experiments where long-
range interactions naturally arise.
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The dynamics of isolated quantum systems has intrigued
physicists since the dawn of quantum mechanics [1].
Furthermore, this topic has been in the spotlight in the
past 2 decades thanks to the experimental advances in
ultracold atoms [2–4] and trapped ions [5] among others
[6,7]. These platforms are some of the prominent candi-
dates for quantum simulation and well suited to investigate
the dynamics away from equilibrium. A typical experi-
mental setting is one where a system parameter suddenly
changes—a scenario described as a quantum quench.
There is mounting evidence, both theoretical and exper-

imental, that generic nonintegrable systems thermalize
upon a quantum quench and local correlations are best
described by a finite-temperature ensemble [8–10]. On the
other hand, integrable systems defined by an extensive set
of conserved quantities fail to thermalize and are often
described by generalized Gibbs ensembles [11–15]. But
even integrable systems often thermalize in a weaker sense
of thermalization if their long-wavelength properties are
described by a finite effective temperature. For example,
such effective thermal behavior has been identified in one-
dimensional condensates [16–21] and even observed in
experiments [22,23]; similar behavior is predicted in
integrableOðN → ∞Þmodels [24–28]. This weaker notion
of thermalization (with obvious merits for critical proper-
ties) is one that we adopt in this Letter. A natural question is
then if, upon a quantum quench and depending on the

initial state, even integrable systems always thermalize at
long wavelengths, or, alternatively, can they exhibit genu-
inely nonequilibrium (critical) behavior?
In this Letter, we consider the quench dynamics of the

Lipkin-Meshkov-Glick (LMG) model, an integrable model
of spins with long-range interactions. This model has been
used to model a variety of systems with applications to
nuclear physics [29], Bose-Einstein condensates [30], small
ferromagnetic particles [31], trapped ions [32–34], and
ultracold atoms [35]. Recent research has focused on the
dynamical aspects of this model [36–40]. We focus on the
role of critical fluctuations and their universal properties.
Our work sheds light on the nature of thermalization near
quantum critical points and the origin of universality in
subsequent dynamics. We show that, depending on the
nature of the initial state (disordered or critical), distinct
universal behaviors emerge in the dynamics. In particular,
we show that fluctuations within the stationary state at late
times can be described by an effective temperature which
drastically depends on the initial state, and may vanish or
even diverge for a quench from a critical state. The latter
divergence is a signature of genuine nonequilibrium critical
behavior.
We first emphasize what distinguishes our results from

previous work. Conventionally, quench dynamics in the
LMGmodel has been investigated with the spins initially in
the ordered phase where the dynamics is governed by
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mean-field equations [34,41–45]. In contrast, we consider
quenches where the order parameter is zero and dynamics
lies solely in fluctuations beyond mean field. Quench
dynamics near critical points have also been explored
extensively in the context of the Kibble-Zurek mechanism
[46,47] as the system is ramped through a quantum critical
point [36,40,48–50]. This mechanism is commonly used to
describe dynamics of slow quenches, or fast but shallow
quenches, setting it apart from our work.
Model.—We consider a prototypical model of long-range

interactions known as the LMGmodel [see Fig. 1(a)] whose
Hamiltonian is given by

H ¼ −
J
N

X
i<j

γxσ
x
i σ

x
j þ γyσ

y
i σ

y
j − Δ

X
i

σzi ; ð1Þ

with the interaction characterized by γx;y and the transverse
field Δ. The collective nature of the model allows us to
write the Hamiltonian in terms of the total spin operators
Sa ¼ 1

2

P
i σ

a
i , with a ¼ x, y, z. Note that the Hamiltonian

commutes with S2 ¼ S2x þ S2y þ S2z , making it block
diagonal in a basis defined by the total spin S. In fact, this
model is integrable [51] and exactly solvable using Bethe
ansatz [52,53].
The ground-state phase diagram of the LMG model

[Fig. 1(b)] exhibits a transition from a disordered para-
magnet to an ordered ferromagnet [54–57]. The in-plane
magnetization serves as an order parameter where
hSxi=N ≠ 0 and/or hSyi=N ≠ 0 in the ordered phase while
hSx;yi=N ¼ 0 in the disordered phase, in the thermody-
namic limit N → ∞. The two phases are separated by a
continuous transition along Δ ¼ Jmaxfγx; γyg. Given the
infinite-range interactions, the phase diagram can be
obtained from a mean-field analysis. However, mean-field
theory is insufficient where the order parameter is zero
(outside the ordered phase) and particularly fails to capture
the divergent fluctuations at the critical point. These
fluctuations scale with N as [58,59]

1

N
hS2xi ∼ N1=3;

1

N
hS2yi ∼ N−1=3; ð2Þ

along the critical line γx > γy; here, the prefactor 1=N
factors out the trivial (square-root-volume) scaling away
from criticality. Notice that the normalized spin fluctuations
diverge only along the direction with the larger interaction
strength. The exponent 1=3 is a distinct signature of the
quantum phase transition [58,59]. In contrast at a finite-
temperature phase transition, the latter fluctuations diverge
with a different critical exponent of 1=2 [60]. Therefore,
critical exponents distinguish between the quantum and
thermal phase transitions of the LMG model.
Quench dynamics.—The LMG model being integrable

does not fully thermalize; nonetheless, a generic quench
gives rise to an effectively thermal behavior including
critical exponents, as we shall see later. The question,
however, remains if effective thermalization can be evaded
at all, and, specifically, if a new, nonthermal critical
behavior could emerge. Remarkably, the answer is in the
affirmative. To show this, we study the dynamics for
different types of quenches and initial states. To expose
the critical behavior, the postquench Hamiltonian is con-
sidered to be one at a critical point; without loss of
generality, we take fγx ¼ 1; γy ¼ 0;Δ ¼ Jg. We consider
three different initial states, each corresponding to the
ground state of the LMG Hamiltonian but at different
parameters: (i) type I, initial state deep in the disordered
phase; (ii) type II, critical initial state on the critical line
Δ ¼ γxJ; (iii) type III, critical initial state on the critical line
Δ ¼ γyJ; see Fig. 1(b). Types II and III are distinguished by
their initial divergent fluctuations in Sx and Sy, respectively.
It is instructive to first discuss a quench within the

disordered phase, where we can make the Holstein-
Primakoff approximation [61]. Rewriting the spin
variables in terms of position and momentum, Sx ≈ffiffiffiffiffiffiffiffiffi
N=2

p
x and Sy ≈ −

ffiffiffiffiffiffiffiffiffi
N=2

p
p, the LMG Hamiltonian (1)

is recast as a harmonic oscillator with frequency Ω2 ≡
4Δ2ð1 − Jγx=ΔÞð1 − Jγy=ΔÞ and mass 2m≡ 1=ðΔ − γyJÞ
[62]. In this picture, the quench corresponds to a sudden
change of the mass and frequency of the oscillator,
fm0;Ω0g → fm;Ωg. The long-time fluctuations following
a quench to the vicinity of the critical point (mΩ ≪ m0Ω0)
are [62]

1

N
hS2xðtÞit→∞ ¼ 1

2
hx2ðtÞit→∞ ≈

m0Ω0

8m2Ω2
: ð3Þ

This expression is reminiscent of a high-temperature
harmonic oscillator (T ≫ Ω) where the equipartition theo-
rem dictates 1

2
mΩ2hx2i ≈ 1

2
T. This hints at the emergence

of an effective temperature Teff ¼ m0Ω0=4m [25], or,
equivalently,

(a) (b)

FIG. 1. (a) Schematic of the LMG model [Eq. (1)]. Spins
interact via anisotropic XY Hamiltonian parametrized by
Jðγx; γyÞ with a transverse magnetic field Δ. (b) Ground-state
phase diagram of the LMG model. The critical (dashed) line
defines the disorder-to-order transition. Three different initial
states, corresponding to type-I, type-II, and type-III quenches, are
shown as open circles, and the postquench Hamiltonian is
denoted by a solid circle.
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Teff ¼
Δ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ0 − Jγx0
Δ0 − Jγy0

s
: ð4Þ

Further insight is obtained by examining the behavior of
Teff for the different quenches. For the type-I quench, the
initial state is disordered (Δ0 > Jγx0, Jγy0), giving rise to a
finite effective temperature. For a type-II quench, the initial
state is critical (Δ0 ¼ Jγx0 > Jγy0), resulting in a vanishing
effective temperature. Surprisingly, for the type-III quench,
the critical initial state (Δ0 ¼ Jγy0 > Jγx0) leads to a
divergent effective temperature. This simple analysis hints
at qualitatively different behaviors in types I, II, and III,
which we will identify with an effective thermal, quantum,
and nonequilibrium critical behavior, respectively. To this
end, we go beyond the Holstein-Primakoff approximation
both numerically using exact diagonalization and analyti-
cally via the Keldysh field theory.
First, we introduce universal scaling functions that

capture the dynamics of the correlations and fluctuations,

1

N
hS2xðtÞi ¼ Nαf

�
t
Nζ

�
; ð5aÞ

C ¼ 1

2N
h½Sxðt2Þ; Sxðt1Þ�þist ¼ NαC̃

�
t2 − t1
Nζ

�
; ð5bÞ

χ ¼ 1

2iN
h½Sxðt2Þ; Sxðt1Þ�−ist ¼ Nζχ̃

�
t2 − t1
Nζ

�
; ð5cÞ

where f, C̃, χ̃ are scaling functions. The two-time corre-
lators C and χ denote the correlation and response
functions, respectively, which in equilibrium are related
via the fluctuation-dissipation relation (FDR) [63]. The
subscript (st) indicates the long-time limit (t1;t2≫ jt1−t2j)
when a stationary state is approached. We introduce two
critical exponents: ζ describing the scaling of dynamics
with system size and α characterizing the scaling of
fluctuations. Remarkably, we see that these exponents
describe the entire dynamics both at short times and the
long-time stationary state. In the Supplemental Material,
we also describe the scaling behavior of the two-time
correlators in frequency space [62].
Numerical results.—Let us discuss the numerical results

for the quench dynamics in the LMG model. The total-spin
conservation allows us to simulate dynamics using exact
diagonalization for large system sizes up to N ¼ 9000 by
restrictingourselves to the largest spin sectorS ¼ N=2which
also contains the ground state. Setting J ¼ 1, we consider the
postquench Hamiltonian with parameters fγx ¼ 1;
γy ¼ 0;Δ ¼ 1g, and the initial states as the ground state
of the Hamiltonian with the following parameters: (i) type I,
fγx ¼ 1; γy ¼ 0;Δ ¼ 4g; (ii) type II, fγx ¼ 1; γy ¼ 0.5;
Δ ¼ 1g; (iii) type III, fγx ¼ 0; γy ¼ 1;Δ ¼ 1g.

The evolution of fluctuations is plotted in Fig. 2, where
each row corresponds to a given quench type. For a type-I
quench [Figs. 2(a) and 2(b)], the initial state is in the
disordered phase with small (i.e., noncritical) fluctuations.
Fluctuations grow initially (t≲ 1=J) independent of the
system size, but peak later at times that increase with the
system size. The scaling collapse of the different curves
[Fig. 2(b)] indicates that fluctuations diverge as N0.5 and
furthermore evolve with a characteristic time scale ∼N0.25

before reaching the stationary state; hence, we identify the
exponents ζ ¼ 0.25 and α ¼ 0.5. Indeed, the same expo-
nents govern the two-time correlators in the stationary
state consistent with the scaling in Eq. (5); see
Supplemental Material [62]. Interestingly, these expo-
nents are identical to those governing a thermal critical
point [60]. This might be surprising because a true thermal
phase transition only occurs at Δ=J < 1 [66] in contrast
with Δ=J ¼ 1 chosen above; hence the stationary state
cannot be described as a Gibbs state [15]. This is also a
consequence of integrability of the model. However, the
fact that the critical behavior is consistent with a thermal
phase transition hints at an effective thermalization at low
frequencies.
For the type-II quench, the initial state is critical

with divergent fluctuations in Sx. As shown in Fig. 2(c),
fluctuations do not significantly grow over time. This
observation indicates that the sudden quench has only
slightly disturbed the system. Indeed, the scaling collapse
shown in Fig. 2(d) reveals the exponents ζ ¼ 0.33 and
α ¼ 0.33, consistent with a quantum critical behavior
already present in the initial state. The emergence of
quantum criticality in a quench from a critical state is also
observed in the OðNÞ model at large N [67].

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Evolution of fluctuations, ð1=NÞhS2xi, for quench types
I, II and III (see Fig. 1) reported in the first [(a)–(b)], second [(c)–
(d)] and third [(e)–(f)] rows, respectively. The right column shows
the rescaled fluctuations and dynamics with the critical exponents
ðα; ζÞ [see Eq. (5)] given by ð1=2; 1=4Þ [panel (b)] ð1=3; 1=3Þ
[panel (d)] and ð2=3; 1=6Þ [panel (f)] corresponding to types I, II
and III, respectively.
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Most interestingly, the type-III quench exhibits novel
nonequilibrium behavior that is neither thermal nor quan-
tum critical. As shown in Fig. 2(e), fluctuations grow faster
than the other quenches. While the dynamics might seem
similar to the type-I quench, the exponents are markedly
different: ðζ; αÞ ¼ ð0.17; 0.67Þ. This indicates that fluctua-
tions diverge with the system size even more strongly than
those in type I or, equivalently, at the thermal critical point.
Indeed, as we shall see shortly, the effective temperature in
this case diverges with the system size. We also compute
the two-time correlators for this quench as shown in Fig. 3
(a). Again, we find that the correlation and response
functions obey the scaling forms in Eqs. (5b) and (5c)
with approximately the same critical exponents.
In equilibrium, the FDR dictates CðωÞ ¼ ð2T=ωÞiχðωÞ

at finite temperature and low frequencies [63]. We use this
relation to define an effective temperature outside equilib-
rium: TeffðωÞ≡ ωCðωÞ=2iχðωÞ, with the low-frequency
limit TIR

eff ¼ limω→0 TeffðωÞ. However, it is difficult to
access numerically, so we take an alternative approach
by using the FDR in the time domain, χðtÞ ¼ ð1=2TÞ∂tCðtÞ
with t the time difference. We identify a time-dependent
effective temperature, TðtÞ≡ ∂tCðtÞ=2χðtÞ [68]. Note that
TðtÞ is not the Fourier transform of the effective temper-
ature TeffðωÞ; however, it is expected to exhibit similar
scaling behavior [62]. Now for the type-III quench, the two-
time correlators in Fig. 3(a) give rise to the time-dependent
effective temperature TðtÞ in Fig. 3(b). In Fig. 3(c),
we show that this temperature scales with system size,
Tðt → 0Þ ∼ N1=3, consistent with the scaling relations in
Eqs. (5b) and (5c) for type III [62]. This scaling should be
contrasted with the constant effective temperature for the
type-I quench [62].
Scaling analysis.—Scaling relations postulated in

Eqs. (5a)–(5c) and observed in numerics can be obtained
from an effective low-frequency theory. At (or near) the
critical point of the postquench Hamiltonian, the relevant
degree of freedom is x, which also serves as the order

parameter within the ordered phase; see discussion above
Eq. (3). The dynamics is governed by the Hamiltonian
H¼p2=2mþ1

2
mΩ2x2þðu=2NÞx4, with u≡Jγx, where we

have included the relevant nonlinear interactions beyond the
harmonic terms [62]. To describe the nonequilibrium
dynamics, we shall utilize the Schwinger-Keldysh path
integral over forward [xþðtÞ] and backward [x−ðtÞ] trajec-
tories weighted by eiðS½xþ�−S½x−�Þ with S the corresponding
action S½xðtÞ� ¼ R

dt½1
2
m_x2 − 1

2
mΩ2x2 − ðu=2NÞx4�:

Z ¼
Z

½dx��W0eiðS½xþ�−S½x−�Þ: ð6Þ

Here, W0 is the Wigner function describing the initial
state. Introducing the variables xc=q ¼ ðxþ � x−Þ=

ffiffiffi
2

p
,

the “Keldysh action” becomes SK ≡ S½xþ� − S½x−� ¼
−
R∞
0 dt½mxq̈xc þ rxqxc þ ðu=NÞðx2c þ x2qÞxcxq�, with

r≡mΩ2. The N dependence of the Wigner function is
given by W0 ¼ Wðx2c0N−α0 ; _x2c0N

α0Þ, where Wð·; ·Þ is an
N-independent function that is significant when its argu-
ments are ≲1 [62]; the form of W can be traced to that of
the ground-state wave function of a particle in a quadratic
(type I) or quartic (types II and III) potential [69]. The
subscript 0 denotes initial values and α0 ¼ 0; 1=3;−1=3
distinguish types I, II, and III, respectively [62]. This
reproduces fluctuations in the initial state hx2i ∼ Nα0

(similarly for p); see Eq. (2). Note that, due to integrability,
no dissipation (∼

R
t xq _xc) arises in the Keldysh action.

We focus on obtaining critical exponents for types I
and III where α0 ≤ 0 and the system is significantly dis-
turbed upon quench.We do so by identifying a scale-invariant
fixedpoint (i.e., independentofN) of theKeldyshactionalong
with the initial state. For quenches to the critical point, r ¼ 0,
we expect (confirmed by numerics) a divergence in fluc-
tuations, hS2xi=N ∼ hx2ci ∼ Nα and a critical slowdown,
t ∼ Nζ, with exponents α, ζ > 0 to be determined.
Defining scaled variables Xc ¼ xcN−α=2 and T ¼ tN−ζ and
appropriately choosing these exponents, the action together
with theWigner function canbemade scale invariant. In terms
of the scaled variables, W0 ¼ WðX2

c0N
α−α0 ; X02

c0N
α−2ζþα0Þ

with X0 ¼ dX=dT. For the quenches under consideration,
α − α0 > 0 andW, only significant for arguments of order 1,
is negligible due a divergent argument unless Xc0 ≈ 0.
Moreover, fluctuations of X0

c0 and thus the Wigner function
can be made scale invariant by setting α − 2ζ þ α0 ¼ 0.
Similar analysis can be done at the level of the action. The
kinetic term (∼

R
t xqẍc) ismade scale invariant by introducing

a rescaled variable Xq ¼ N−α=2þζxq. The interaction,
ð−1=NÞ Rt ucxqx3c þ uqx3qxc, comprises “classical” (∼uc)
and “quantum” (∼uq) vertices although uc ¼ uq at the
microscopic level. Recasting the classical vertex in terms of
the rescaled variables, we have uc=N → ucN2ζþα−1, which
becomes scale invariant when 2ζ þ α − 1 ¼ 0. Under these
scaling transformations, the quantum vertex is suppressed by

(a) (b)

(c)

FIG. 3. (a) The correlation and response functions within the
stationary state for the type-III quench for different system sizes.
t2 ¼ 20 is chosen to ensure that the stationary state is reached.
Scaling collapse is consistent with the exponents ζ ¼ 1=6 and
α ¼ 2=3. (b) Time-dependent effective temperature TðtÞ ex-
tracted from the two-time correlators for N ¼ 3000 shown in
(a). (c) Scaling of TðtÞ with system size in the limit t → 0. It is
consistent with Tðt → 0Þ ∼ N1=3.
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N and becomes irrelevant. In contrast to types I and III, the
type-II quench (α0 > 0) acts as a marginal perturbation of a
critical system; hence the quantum critical behavior persists
[62]. Finally, combining the above relations, the critical
exponents are determined as ζ ¼ ð1þ α0Þ=4 and
α ¼ ð1 − α0Þ=2. Our scaling analysis yields the exponents
listed in Table I consistent with numerics, and also reproduces
the scaling of the effective temperature [62]. We remark that,
in analogy with boundary critical phenomena [70,71], our
analysis has relied on scaling both “boundary” and “bulk”
terms.Here,wehave focusedon finite-size scaling,butwecan
also identify the scaling behavior in the thermodynamic limit
(N → ∞) away from the critical point [62].
The nonequilibrium dynamics reported in this Letter is

accessible in a variety of experimental platforms, particu-
larly in the context of trapped ions [5,32,34], which are
described by spin models with long- or even infinite-range
interactions. A challenge is to prepare an initial critical state
for type-II and type-III quench dynamics. However, based
on a quantum approximate optimization protocol [72],
variational quantum algorithms have been recently pro-
posed [73] and implemented [74] to efficiently prepare
quantum critical states.
Conclusion and outlook.—In this Letter, we have iden-

tified scenarios where genuinely nonequilibrium critical
behavior emerges in the dynamics of integrable quantum
systems. The infinite-range nature of the LMG model is
particularly useful in our analytical and numerical analysis;
however, short-range integrable systems such as the
OðN → ∞Þ model [25,67] and free fermions also exhibit
analogs of types I and II. Additionally, similar
behavior should be expected for long-range spin models,
VðrÞ ∼ 1=rp specifically with p < 1, which, though not
integrable, give rise to long-lived prethermal states [75].
Extending our results to other integrable models or those
exhibiting long-lived prethermalization is worthwhile.
Finally, it would be interesting to identify aging behavior
[76] in such models.
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