
 

Cost of Quantum Entanglement Simplified

Xin Wang 1,2,* and Mark M. Wilde 3,†
1Institute for Quantum Computing, Baidu Research, Beijing 100193, China

2Joint Center for Quantum Information and Computer Science, University of Maryland,
College Park, Maryland 20742, USA

3Hearne Institute for Theoretical Physics, Department of Physics and Astronomy
and Center for Computation and Technology, Louisiana State University,

Baton Rouge, Louisiana 70803, USA

(Received 15 December 2019; accepted 7 July 2020; published 24 July 2020)

Quantum entanglement is a key physical resource in quantum information processing that allows for
performing basic quantum tasks such as teleportation and quantum key distribution, which are impossible
in the classical world. Ever since the rise of quantum information theory, it has been an open problem to
quantify entanglement in an information-theoretically meaningful way. In particular, every previously
defined entanglement measure bearing a precise information-theoretic meaning is not known to be
efficiently computable, or if it is efficiently computable, then it is not known to have a precise information-
theoretic meaning. In this Letter, we meet this challenge by introducing an entanglement measure that has a
precise information-theoretic meaning as the exact cost required to prepare an entangled state when two
distant parties are allowed to perform quantum operations that completely preserve the positivity of the
partial transpose. Additionally, this entanglement measure is efficiently computable by means of a
semidefinite program, and it bears a number of useful properties such as additivity and faithfulness. Our
results bring key insights into the fundamental entanglement structure of arbitrary quantum states, and they
can be used directly to assess and quantify the entanglement produced in quantum-physical experiments.
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Introduction.—Quantum entanglement is a fundamental
property of quantum states that has no classical analog. As
famously remarked by Schrödinger [1], it is “the character-
istic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought.” Einstein,
Podolsky, and Rosen were confounded by entanglement
[2], and, based on this, proposed a theory alternative to
quantum mechanics, which was later ruled out by a
theoretical proposal of Bell [3] and experimental confir-
mations of Bell’s test [4–7].
The aforementioned early work on understanding entan-

glement ended up being foundational for the modern field
of quantum information science [8,9], whose goal is to
harness the strange properties of quantum states for
information processing tasks that are not possible in the
classical world. Due to seminal work by Bennett et al.,
we now understand quantum entanglement to be the
enabling fuel for a variety of quantum protocols such as
teleportation [10], dense coding [11], and quantum key
distribution [12,13].
In the fundamental protocols mentioned above, it is

required for the entangled states being consumed to be in a
pure form, known as maximally entangled states. However,
in experimental practice, quantum states do not come in this
pure variety, but instead are produced as mixtures of pure
states. As such, a key goal of the resource theory of

entanglement [14] is to understand how well mixed
quantum states can be converted to pure maximally
entangled states and vice versa, by means of “free” physical
operations that do not increase entanglement. Motivated by
the “distant laboratories paradigm,” in which the two
parties holding shares of a quantum state are spatially
separated, one set of physical operations that is reasonable
to allow for free consists of those that can be implemented
by local operations and classical communication (LOCC).
The characterization of entanglement as a resource in
practical settings is also rooted in this distant laboratories
paradigm.
There are two primary operational ways for quantifying

entanglement in a two-party quantum state ρAB: the first is
known as distillable entanglement [14] and the second is
known as entanglement cost [14,15]. In the first approach,
one is interested to know the largest rate at which
maximally entangled states can be distilled by means of
LOCC from the state ρAB. In the second, one is interested to
know the smallest rate at which maximally entangled states
are required to prepare the state ρAB by means of LOCC.
There are a number of technical variations of each task that
have been considered [14–17], involving one or multiple
copies of the state ρAB, or for the task to be accomplished
exactly or with some error tolerance. So far, beyond the
case of pure states [18], it has been a great challenge since
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the publication of the seminal work in [14] to characterize
the distillability and cost of quantum entanglement.
Much of the progress during the past two decades has to
do with finding alternative entanglement measures that
bound entanglement distillability or cost, while possessing
properties that are generally agreed upon to be reason-
able [19–28]. Even many of the measures that have been
defined are known to be difficult to compute [29].
Due to the aforementioned challenges associated with

mixed-state entanglement and the set LOCC in general [30],
researchers have looked in other directions in order to
understand the nature of entanglement. One approach was
pioneered in [21], with the introduction of another set of free
operations that “completely preserve the positivity of the
partial transpose” [31] (we explain the precise meaning of
this term later). This set (abbreviated by C-PPT-P) has been
considered in prior work [24,28,32–34] on entanglement
theory for at least two reasons. (i) The mathematical
structure of LOCC is difficult to work with and so enlarging
the set to a more mathematically tractable set allows for
providing bounds on what one could accomplish with
LOCC. That is, such free operations provide accessible
estimates of the capabilities of LOCC in entanglement
manipulation. (ii) The free states that correspond to this
enlarged set, known as positive partial transpose (PPT)
states, in any case do not have any useful entanglement on
their own (in the sense that it is impossible to distill
maximally entangled states from them at a nontrivial rate
via LOCC). As observed in [21], an advantage of the set
C-PPT-P over LOCC is that performing optimizations over
it allows for incorporating the tools of semi-definite
programming.
One key problem that has remained open for many years

now is to characterize the exact entanglement cost of a
quantum state ρAB when C-PPT-P operations are allowed
for free, which is equal to the minimum rate at which
entanglement is required to prepare many perfect and
identical copies of ρAB by means of these free operations.
The optimal rate is known as the PPT exact entanglement
cost. The problem was formalized in [33], where some
bounds on this quantity were given and some partial
solutions were presented. The problem was considered
further in [35], which however focused mainly on trans-
formations of pure entangled states.
In this Letter, we determine the PPT exact entanglement

cost of an arbitrary two-party quantum state, thus closing a
longstanding investigation in entanglement theory. We find
that the solution is given by a new entanglement measure,
which we call κ entanglement. The κ entanglement can be
calculated by means of a semidefinite program [36],
implying that it can be efficiently calculated in time
polynomial in the dimension of the state on which it is
being evaluated [37–41]. These two properties single out
the κ entanglement as the first entanglement measure that
has a concrete information-theoretic meaning while being

efficiently calculable. The κ entanglement also bears a
number of desirable properties, including additivity, norma-
lization, and faithfulness, which we expand upon later. It is
neither convex nor monogamous [42], which calls into
question whether it is truly necessary for an entanglement
measure to satisfy either of these properties.
Our results on the κ entanglement of quantum states

bring new insights regarding the structure of quantum
entanglement as a physical resource. For one, they demo-
nstrate that entanglement can be quantified in a precise and
physically relevant operational scenario. Furthermore, they
call into question whether properties such as monogamy or
convexity are really required for entanglement measures;
this is in light of the fact that κ entanglement does not have
these properties while at the same time having the afore-
mentioned operational meaning.
We now begin the more technical part of our Letter by

giving some background, defining the PPT exact entangle-
ment cost and κ entanglement of a quantum state, and
justifying how these quantities are equal. We note here that
all mathematical proofs of the various statements and
properties summarized in this Letter are given in the
Supplemental Material [43], which also includes the follow-
ing references not mentioned in the main text [44–57].
Let us first recall some basic elements of quantum

information. A two-party or bipartite quantum state ρAB
is a unit trace, positive semidefinite operator acting on a
tensor-product Hilbert space HA ⊗ HB. We say that Alice
possesses system A and Bob system B, and we imagine that
Alice and Bob are located in distant laboratories. Such a
state is separable [58] if there exists a probability distri-
bution pX and sets of states fσxAgx and fτxBgx such that

ρAB ¼
X
x

pXðxÞσxA ⊗ τxB: ð1Þ

If ρAB cannot be written in the above way, then it is
entangled [58].
It is a difficult (NP hard) computational problem to decide

whether an arbitrary quantum state is separable or entangled
[59,60]. As such, researchers have sought out simpler, “one-
way” criteria to classify entanglement of quantum states.
Possibly the simplest such criterion is the positive partial
transpose criterion [61,62]. To define this, recall that the
partial transpose, with respect to a given orthonormal basis
fjiiBgi, is defined as the following linear map:

TBðXABÞ ≔
X
i;j

ðIA ⊗ jiihjjBÞXABðIA ⊗ jiihjjBÞ; ð2Þ

which we also write as XTB
AB ≡ TBðXABÞ. An operator XAB

has positive partial transpose (PPT) if TBðXABÞ is positive
and semidefinite. By inspecting definitions, we conclude
that if a bipartite state is separable, then it is a PPT state. By
contrapositive, we conclude that a bipartite state is entangled
if it has a negative partial transpose. The PPT criterion is
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one-way in the sense that there exist entangled PPT
states [63].
A quantum channel is a completely positive trace-

preserving map, and a bipartite quantum channel
N AB→A0B0 accepts input systems A and B and outputs A0
and B0, where one party Alice possesses A and A0 and
another party Bob possesses B and B0. A bipartite quantum
channel N AB→A0B0 is completely positive-partial-transpose
preserving [21], abbreviated as C-PPT-P, if the map
TB0∘N AB→A0B0∘TB is completely positive.
In the resource theory of NPT (nonpositive partial

transpose) entanglement, the free operations allowed are
C-PPT-P bipartite channels and the free states are PPT
states, and one of the main goals is to determine if one
bipartite state can be converted to another either exactly or
approximately by means of the free operations. The
particular task of interest to us here is the PPT exact
entanglement cost.
One-shot exact entanglement cost.—We begin by defin-

ing the one-shot PPT exact entanglement cost of a bipartite
state ρAB as the logarithm of the minimum Schmidt rank of
a maximally entangled state that is required to prepare ρAB
by means of a C-PPT-P channel:

Eð1Þ
PPTðρABÞ ≔ log2 inf

d∈N;Λ∈PPT
fd∶ρAB ¼ ΛÂ B̂→ABðΦd

Â B̂
Þg;

where Λ ∈ PPT is a shorthand for Λ being a C-PPT-P
bipartite channel and the maximally entangled state Φd

Â B̂
is

defined as

Φd
Â B̂

≔
1

d

X
i;j

jiihjjÂ ⊗ jiihjjB̂; ð3Þ

with fjiiÂgi and fjiiB̂gi orthonormal bases. The (asymp-
totic) PPT exact entanglement cost of ρAB is defined as

EPPTðρABÞ ≔ lim sup
n→∞

1

n
Eð1Þ
PPTðρ⊗n

ABÞ: ð4Þ

By building on earlier results from [33,35], our first
result is for the one-shot PPT exact entanglement cost.
Proposition 1.—For a given bipartite quantum state ρAB,

its one-shot PPT exact entanglement cost is given by

Eð1Þ
PPTðρABÞ ¼

inf

� log2m∶GAB ≥ 0;Tr½GAB� ¼ 1;

−ðm − 1ÞGTB
AB ≤ ρTB

AB ≤ ðmþ 1ÞGTB
AB;m ∈ N

�
: ð5Þ

The proof of this result involves an achievability and
optimality part. The achievability part constructs the
channel ΛÂ B̂→AB ∈ PPT as the following measure-prepare
procedure:

ΛÂ B̂→ABðωÂ B̂Þ ≔ ρABTr½Φm
Â B̂

ωÂ B̂�
þ GABTr½ðIÂ B̂ −Φm

Â B̂
ÞωÂ B̂�; ð6Þ

for GAB a quantum state satisfying −ðm − 1ÞGTB
AB ≤

ρTB
AB ≤ ðmþ 1ÞGTB

AB. That ΛÂ B̂→AB is a quantum channel
follows immediately from its construction, and that
ΛÂ B̂→AB ∈ PPT follows from the constraint on GAB. For
the optimality part, we exploit the symmetry of the
maximally entangled state Φd

Â B̂
, that it is invariant under

the unitary channel ðU ⊗ ŪÞð·ÞðU ⊗ ŪÞ† for an arbitrary
unitary U, in order to constrain the set of channels that we
have to consider for the PPT exact entanglement cost. Then
by applying the constraint that ΛÂ B̂→AB ∈ PPT, it follows
that the constructed channel is optimal.
κ entanglement.—The bottleneck of solving the PPT

entanglement cost of a general bipartite state lies in
determining the regularization of the one-shot cost, which
involves evaluating the limit of a series of optimization
problems. To overcome this difficulty, we introduce an
efficiently computable entanglement measure, called κ
entanglement, defined as

EκðρABÞ ≔ log2 inf
SAB≥0

fTr½SAB�∶ − STB
AB ≤ ρTB

AB ≤ STB
ABg:

In particular, Eκ can be computed by means of a semi-
definite program (SDP) [64] (see Section II-B in [43] for
details). SDPs can be computed efficiently by polynomial-
time algorithms [37–41] and are often applied in quantum
information (e.g., [65–72]). The CVX software [73] allows
one to compute SDPs in practice.
By observing that κ entanglement is a relaxation of the

one-shot cost in Proposition 1 up to small corrections, we
arrive at the following bounds on the one-shot exact
entanglement cost:
Proposition 2.—For a bipartite state ρAB, we have

log2ð2EκðρABÞ − 1Þ ≤ Eð1Þ
PPTðρABÞ ≤ log2ð2EκðρABÞ þ 2Þ: ð7Þ

This result gives a tight and efficiently computable
bound for the one-shot PPT exact entanglement cost in
terms of κ entanglement. A rigorous proof can be found in
[43]. Thus, the inequality in Proposition 2 demonstrates
that the κ entanglement is closely related to the one-shot
PPT exact entanglement cost, and as both the operational
quantity Eð1Þ

PPTðρABÞ and the entanglement measure EκðρABÞ
become larger, the gap between them disappears.
In addition to being efficiently calculable by means of a

semidefinite program, the κ entanglement possesses several
properties desirable for an entanglement measure, includ-
ing monotonicity under selective C-PPT-P operations,
additivity, faithfulness, and normalization. We elaborate
on each of these briefly now. The monotonicity is the
following inequality:
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EκðρABÞ ≥
X

x∶pðxÞ>0
pðxÞEκðρxA0B0 Þ; ð8Þ

where pðxÞ ≔ Tr½Px
AB→A0B0 ðρABÞ�, the set fPx

AB→A0B0 gx
consists of completely positive, trace nonincreasing,
C-PPT-P maps such that

P
x P

x
AB→A0B0 is trace preserving,

and ρxA0B0 ≔ Px
AB→A0B0 ðρABÞ=pðxÞ. The inequality in (8)

asserts that κ entanglement does not increase on average
under the action of selective C-PPT-P operations, which
include selective LOCC operations as a special case.
Additivity is the following statement, which is critical
for establishing one of the key results of our Letter:

EκðωA1A2∶B1B2
Þ ¼ EκðρA1B1

Þ þ EκðθA2B2
Þ; ð9Þ

where ωA1A2∶B1B2
≔ ρA1B1

⊗ θA2B2
and ρA1B1

and θA2B2
are

quantum states. Faithfulness is that EκðρABÞ ¼ 0 if and
only if ρAB is a PPT state. Finally, normalization is that
EκðΦd

ABÞ ¼ log2 d for Φd
AB in a maximally entangled state

of the form in (3). Proofs of the properties above are
provided in [43].
Exact entanglement cost.—The PPT exact entanglement

cost EPPT has been a longstanding open question since it
was first introduced in [33]. The previously best known
upper and lower bounds [33] are tight for general Werner
states, but they are not tight in general. The difficulty of
determining EPPT comes from the fact that the one-shot cost
is not an SDP, and its regularization makes the problem
more intractable. However, by utilizing the techniques of
semidefinite optimization and relaxation, we prove that the
asymptotic exact entanglement cost of a state ρAB is given
by EκðρABÞ. Specifically, by exploiting (7), the definition of
PPT exact entanglement cost in (4), and the additivity of κ
entanglement in (9), we arrive at one of our core
contributions.
Theorem 1.—The PPT exact entanglement cost of an

arbitrary bipartite state ρAB is given by

EPPTðρABÞ ¼ EκðρABÞ: ð10Þ

This result has two important consequences. First, it
demonstrates that κ entanglement precisely determines the
PPT exact entanglement cost of an arbitrary quantum state.
Notably, this is the first time that an entanglement measure
for general bipartite states has been proven not only to
possess a direct operational meaning but also to be
efficiently computable, thus solving a question that has
remained open since the inception of entanglement theory
over two decades ago. Second, note that Eκ is additive [cf.,
Eq. (9)], so that Theorem 1 implies that the PPT exact
entanglement cost is additive in general:

EPPTðρAB ⊗ ωA0B0 Þ ¼ EPPTðρABÞ þ EPPTðωA0B0 Þ: ð11Þ
Based on Theorem 1, we further show that the PPT exact

entanglement cost violates the convexity and monogamy

inequalities, which gives insight to the fundamental struc-
ture of entanglement. Recall that for an entanglement
measure E, convexity is the following statement:

Eðρ̄ABÞ ≤
X
z

pðzÞEðρzABÞ; ð12Þ

where pðzÞ is a probability distribution, fρzABgz is a set of
states, and ρ̄AB ≔

P
z pðzÞρzAB. This is not true for the PPT

exact entanglement cost. In particular, let us choose the
two-qubit states ρ1 ≔ Φ2, ρ2 ≔ 1

2
ðj00ih00j þ j11ih11jÞ,

and their average ρ ≔ 1
2
ðρ1 þ ρ2Þ. By direct calculation,

we find that EPPTðρ1Þ ¼ 1, Eκðρ2Þ ¼ 0, and EκðρÞ ¼ log2
3
2
,

from which we conclude that

EκðρÞ >
1

2
½Eκðρ1Þ þ Eκðρ2Þ�; ð13Þ

This implies the following.
Proposition 3: no convexity.—The PPT exact entan-

glement cost is not generally convex.
As a consequence of the finding above, the exact

entanglement cost of preparing the average of two states
ρ1 and ρ2 can sometimes be strictly larger than the average
exact entanglement cost of preparing each state separately.
Convexity is sometimes associated with the loss of entan-
glement under the discarding of classical information.
However, this is only sensible for entanglement measures
that obey what is known as the “flags” property [24,26,74].
Note that the κ entanglement does not possess this property
(if it were to, then it would be convex). We stress here that
the κ entanglement is monotone under LOCC, as indicated
in (8), which implies that it does not increase when Alice
and Bob discard local registers in their possession. Since
local registers of course can be classical registers, we
conclude that κ entanglement does not increase under the
loss of classical information in this sense. The lack of
convexity for κ entanglement simply means that, in some
cases, the cost of preparing the average of two states can
exceed the average cost of preparing the individual states.
See [24] for further discussions about this point.
Monogamy of an entanglement measure E is as

follows [42]:

EðρA∶BCÞ ≥ EðρA∶BÞ þ EðρA∶CÞ; ð14Þ

where ρABC is a tripartite state. It captures the idea that the
sum of the entanglement that Alice shares individually with
Bob and Charlie when they are all in separate laboratories
cannot exceed the entanglement that she has with them
when Bob and Charlie are in the same laboratory. Here, by
utilizing κ entanglement, we show that EPPTðψABÞ þ
EPPTðψACÞ > EPPTðψAðBCÞÞ for the tripartite state jψiABC ¼
1
2
ðj000iABC þ j011iABC þ ffiffiffi

2
p j110iABCÞ. Thus, we have the

following.
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Proposition 4: no monogamy.—The PPT exact entan-
glement cost is not generally monogamous.
In some literature on entanglement (see, e.g., [24]), the

properties of convexity and monogamy were thought to be
essential features of entanglement, but the fact that κ
entanglement is neither convex nor monogamous, while
having a clear-cut operational meaning, calls into question
whether these properties are really necessary for an
entanglement measure. See [24,75] for other discussions
questioning the necessity of these two properties.
As another implication of our results, we find by

example that exact PPT entanglement manipulation is
irreversible. In particular, this example together with
several classes of examples in Section V of [43] imply
that EPPT is generally not equal to the logarithmic neg-
ativity EN [22,24]. Consider the following rank-two state
supported on the 3 × 3 antisymmetric subspace [28]:

ρvAB ¼ 1

2
ðjv1ihv1jAB þ jv2ihv2jABÞ; ð15Þ

with

jv1iAB ≔ ðj01iAB − j10iABÞ=
ffiffiffi
2

p
; ð16Þ

jv2iAB ≔ ðj02iAB − j20iABÞ=
ffiffiffi
2

p
: ð17Þ

For the state ρvAB, it holds that

ENðρvABÞ ¼ log2ð1þ 1=
ffiffiffi
2

p
Þ < EPPTðρvABÞ ¼ 1

< log2ZðρvABÞ ¼ log2ð1þ 13=4
ffiffiffi
2

p
Þ; ð18Þ

where log2 ZðρABÞ is the previous upper bound on EPPT
from [33]. The strict inequalities above also imply that the
previously best-known lower and upper bounds from [33]
are not tight. Since the logarithmic negativity is known to
be an upper bound on PPT exact distillable entanglement
[22,76], we conclude that exact PPT entanglement manipu-
lation is irreversible.
Conclusions.—We have shown that the PPT exact

entanglement cost is equal to the κ entanglement, a
single-letter, efficiently computable entanglement measure.
Our results constitute a significant development for entan-
glement theory, representing the first time that an entan-
glement measure has been proven to be not only efficiently
computable but also to possess a direct information-
theoretic meaning. Prior to our work, every other entan-
glement measure introduced previously possesses only one
of these two properties, and thus they were either not
accessible computationally or not information-theoretically
meaningful. Our work closes this outstanding theoretical
gap, because our entanglement measure can be calculated
efficiently by semidefinite programming and it has an
operational meaning as the cost of maximally entangled
states needed to prepare a state. This unique feature

improves our understanding of the fundamental structure
and power of entanglement.
Furthermore, we have shown that the κ entanglement (or

exact PPT entanglement cost) possesses properties such as
additivity, monotonicity, faithfulness, normalization, non-
convexity, and nonmonogamy. These results give insight
into the structure of quantum entanglement that have not
previously been observed in a general operational setting
and bring a significant simplification to entanglement
theory. In particular, most prior discussions about the
structure and properties of entanglement are based on
entanglement measures. However, none of these measures,
with the exception of the regularized relative entropy of
entanglement, possesses a direct operational meaning.
Thus, the connection made by Theorem 1 allows for the
study of the structure of entanglement via an entanglement
measure possessing a direct operational meaning. Given
that Eκ ¼ EPPT is neither convex nor monogamous, this
raises questions of whether these properties should really
be required or necessary for measures of entanglement, in
contrast to the discussions put forward in [26,42] based on
intuition.
Our results may also shed light on the open question of

whether distillable entanglement is convex [77], but this
remains the topic of future work. In the multipartite setting,
it is known that a version of distillable entanglement is not
convex [78].
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and W. K. Wootters, Teleporting an Unknown Quantum
State via Dual Classical and Einstein-Podolsky-Rosen
Channels, Phys. Rev. Lett. 70, 1895 (1993).

[11] C. H. Bennett and S. J. Wiesner, Communication via One-
and Two-Particle Operators on Einstein-Podolsky-Rosen
States, Phys. Rev. Lett. 69, 2881 (1992).

[12] C. H. Bennett and G. Brassard, Quantum cryptography:
Public key distribution and coin tossing, in Proceedings of
IEEE International Conference on Computers Systems and
Signal Processing (IEEE, New York, 1984), pp. 175–179.

[13] A. K. Ekert, Quantum Cryptography Based on Bell’s
Theorem, Phys. Rev. Lett. 67, 661 (1991).

[14] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Mixed-state entanglement and quantum error
correction, Phys. Rev. A 54, 3824 (1996).

[15] P. M. Hayden, M. Horodecki, and B. M. Terhal, The
asymptotic entanglement cost of preparing a quantum state,
J. Phys. A 34, 6891 (2001).

[16] B. M. Terhal and P. Horodecki, Schmidt number for density
matrices, Phys. Rev. A 61, 040301(R) (2000).

[17] F. Buscemi and N. Datta, Entanglement Cost in Practical
Scenarios, Phys. Rev. Lett. 106, 130503 (2011).

[18] C. H. Bennett, H. J. Bernstein, S. Popescu, and
B. Schumacher, Concentrating partial entanglement by local
operations, Phys. Rev. A 53, 2046 (1996).

[19] V. Vedral and M. B. Plenio, Entanglement measures and
purification procedures, Phys. Rev. A 57, 1619 (1998).

[20] E. M. Rains, Bound on distillable entanglement, Phys. Rev.
A 60, 179 (1999).

[21] E. M. Rains, A semidefinite program for distillable
entanglement, IEEE Trans. Inf. Theory 47, 2921 (2001).

[22] G. Vidal and R. F. Werner, Computable measure of
entanglement, Phys. Rev. A 65, 032314 (2002).

[23] M. Christandl and A. Winter, ‘Squashed entanglement”: An
additive entanglement measure, J. Math. Phys. (N.Y.) 45,
829 (2004).

[24] M. B. Plenio, Logarithmic Negativity: A Full Entanglement
Monotone that is not Convex, Phys. Rev. Lett. 95, 090503
(2005).

[25] M. B. Plenio and S. S. Virmani, An introduction to
entanglement measures, Quantum Inf. Comput. 7, 1
(2007).

[26] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[27] X. Wang and R. Duan, An improved semidefinite program-
ming upper bound on distillable entanglement, Phys. Rev. A
94, 050301(R) (2016).

[28] X. Wang and R. Duan, Irreversibility of Asymptotic
Entanglement Manipulation under Quantum Operations
Completely Preserving Positivity of Partial Transpose, Phys.
Rev. Lett. 119, 180506 (2017).

[29] Y. Huang, Computing quantum discord is NP-complete,
New J. Phys. 16, 033027 (2014).

[30] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A.
Winter, Everything you always wanted to know about
LOCC (but were afraid to ask), Commun. Math. Phys.
328, 303 (2014).

[31] E. Chitambar, J. I. de Vicente, M.W. Girard, and G. Gour,
Entanglement manipulation beyond local operations and
classical communication, J. Math. Phys. 61, 042201 (2020).

[32] T. Eggeling, K. G. H. Vollbrecht, R. F. Werner, and M.M.
Wolf, Distillability via Protocols Respecting the Positivity
of Partial Transpose, Phys. Rev. Lett. 87, 257902 (2001).

[33] K. Audenaert, M. B. Plenio, and J. Eisert, Entanglement
Cost under Positive-Partial-Transpose-Preserving Opera-
tions, Phys. Rev. Lett. 90, 027901 (2003).

[34] M. Horodecki, J. Oppenheim, and R. Horodecki, Are the
Laws of Entanglement Theory Thermodynamical?, Phys.
Rev. Lett. 89, 240403 (2002).

[35] W. Matthews and A. Winter, Pure-state transformations and
catalysis under operations that completely preserve posi-
tivity of partial transpose, Phys. Rev. A 78, 012317 (2008).

[36] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, England, 2004).

[37] L. G. Khachiyan, Polynomial algorithms in linear
programming, USSR Computational Mathematics and
Mathematical Physics 20, 53 (1980).

[38] S. Arora, E. Hazan, and S. Kale, Fast algorithms for
approximate semidefinite programming using the multipli-
cative weights update method, in 46th Annual IEEE
Symposium on Foundations of Computer Science (IEEE,
Piscataway, 2005), pp. 339–348.

[39] S. Arora and S. Kale, A combinatorial, primal-dual
approach to semidefinite programs, in Proceedings of the
Thirty-Ninth Annual ACM Symposium on Theory of
Computing (Association for Computing Machinery,
New York, 2007), pp. 227–236.

[40] S. Arora, E. Hazan, and S. Kale, The multiplicative weights
update method: a meta-algorithm and applications, Theory
Comput. 8, 121 (2012).

[41] Y. T. Lee, A. Sidford, and S. C. W. Wong, A faster cutting
plane method and its implications for combinatorial and
convex optimization, in IEEE 56th Annual Symposium on
the Foundations of Computer Science (2015), pp. 1049–
1065.

[42] B. M. Terhal, Is entanglement monogamous? IBM J. Res.
Dev. 48, 71 (2004).

[43] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.040502 for de-
tailed mathematical proofs of the results stated in the main
text.

[44] M. A. Nielsen, Conditions for a Class of Entanglement
Transformations, Phys. Rev. Lett. 83, 436 (1999).

[45] M. Hayashi, Quantum Information: An Introduction
(Springer, New York, 2006).

[46] Q. Yue and E. Chitambar, The zero-error entanglement
cost is highly non-additive, J. Math. Phys. 60, 112204
(2019).

[47] M. Horodecki and P. Horodecki, Reduction criterion of
separability and limits for a class of distillation protocols,
Phys. Rev. A 59, 4206 (1999).

[48] J. Watrous, The Theory of Quantum Information
(Cambridge University Press, Cambridge, England, 2018).

PHYSICAL REVIEW LETTERS 125, 040502 (2020)

040502-6

https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1088/0305-4470/34/35/314
https://doi.org/10.1103/PhysRevA.61.040301
https://doi.org/10.1103/PhysRevLett.106.130503
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.57.1619
https://doi.org/10.1103/PhysRevA.60.179
https://doi.org/10.1103/PhysRevA.60.179
https://doi.org/10.1109/18.959270
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1063/1.1643788
https://doi.org/10.1063/1.1643788
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevA.94.050301
https://doi.org/10.1103/PhysRevA.94.050301
https://doi.org/10.1103/PhysRevLett.119.180506
https://doi.org/10.1103/PhysRevLett.119.180506
https://doi.org/10.1088/1367-2630/16/3/033027
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1007/s00220-014-1953-9
https://doi.org/10.1063/1.5124109
https://doi.org/10.1103/PhysRevLett.87.257902
https://doi.org/10.1103/PhysRevLett.90.027901
https://doi.org/10.1103/PhysRevLett.89.240403
https://doi.org/10.1103/PhysRevLett.89.240403
https://doi.org/10.1103/PhysRevA.78.012317
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1147/rd.481.0071
https://doi.org/10.1147/rd.481.0071
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.040502
https://doi.org/10.1103/PhysRevLett.83.436
https://doi.org/10.1063/1.5087815
https://doi.org/10.1063/1.5087815
https://doi.org/10.1103/PhysRevA.59.4206


[49] F. Furrer, J. Aberg, and R. Renner, Min- and max-entropy in
infinite dimensions, Commun. Math. Phys. 306, 165 (2011).

[50] S. Ishizaka, Binegativity and geometry of entangled states in
two qubits, Phys. Rev. A 69, 020301 (2004).

[51] V. Coffman, J. Kundu, and W. K. Wootters, Distributed
entanglement, Phys. Rev. A 61, 052306 (2000).

[52] M. Koashi and A. Winter, Monogamy of quantum entan-
glement and other correlations, Phys. Rev. A 69, 022309
(2004).

[53] G. F. Dell’Antonio, On the limits of sequences of normal
states, Commun. Pure Appl. Math. 20, 413 (1967).

[54] M. Reed and B. Simon, Methods of Modern Mathematical
Physics, Vol. I Functional Analysis (Academic Press,
New York, 1978).

[55] G. Gour and C. M. Scandolo, The entanglement of a
bipartite channel, arXiv:1907.02552v3.

[56] X. Wang and M.M. Wilde, Exact entanglement cost of
quantum states and channels under PPT-preserving
operations, arXiv:1809.09592v1.

[57] F. G. S. L. Brandao, Quantifying entanglement with witness
operators, Phys. Rev. A 72, 022310 (2005).

[58] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model, Phys. Rev.
A 40, 4277 (1989).

[59] L. Gurvits, Classical deterministic complexity of Edmonds’
problem and quantum entanglement, in Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Com-
puting (Association for Computing Machinery, New York,
2003), pp. 10–19.

[60] S. Gharibian, Strong NP-hardness of the quantum sepa-
rability problem, Quantum Inf. Comput. 10, 343 (2010).

[61] A. Peres, Separability Criterion for Density Matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[62] M. Horodecki, P. Horodecki, and R. Horodecki, Separability
of mixed states: necessary and sufficient conditions, Phys.
Lett. A 223, 1 (1996).

[63] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-
State Entanglement and Distillation: Is there a “Bound”
Entanglement in Nature? Phys. Rev. Lett. 80, 5239 (1998).

[64] L. Vandenberghe and S. Boyd, Semidefinite programming,
SIAM Rev. 38, 49 (1996).

[65] A. S. Fletcher, P. W. Shor, and M. Z. Win, Optimum
quantum error recovery using semidefinite programming,
Phys. Rev. A 75, 012338 (2007).

[66] J. Watrous, Semidefinite programs for completely bounded
norms, Theory Comput. 5, 217 (2009).

[67] D. Leung and W. Matthews, On the power of PPT-
preserving and non-signalling codes, IEEE Trans. Inf.
Theory 61, 4486 (2015).

[68] L. Lami, B. Regula, X. Wang, R. Nichols, A. Winter, and G.
Adesso, Gaussian quantum resource theories, Phys. Rev. A
98, 022335 (2018).

[69] K. Fang, X. Wang, M. Tomamichel, and M. Berta,
Quantum channel simulation and the channel’s smooth
max-information, IEEE Trans. Inf. Theory 66, 2129
(2020).

[70] X. Wang, Semidefinite optimization for quantum informa-
tion, Ph.D. thesis, University of Technology Sydney, 2018,
http://hdl.handle.net/10453/127996.

[71] X. Wang, M. M. Wilde, and Y. Su, Efficiently Computable
Bounds for Magic State Distillation, Phys. Rev. Lett. 124,
090505 (2020).

[72] K. Wang, X. Wang, and M.M. Wilde, Quantifying the
unextendibility of entanglement, arXiv:1911.07433.

[73] M. Grant and S. Boyd, CVX: MATLAB Software for
Disciplined Convex Programming (CVX Research, Inc.,
Stanford, 2008).

[74] M. Horodecki, Simplifying monotonicity conditions for
entanglement measures, Open Syst. Inf. Dyn. 12, 231
(2005).

[75] G. Gour and Y. Guo, Monogamy of entanglement without
inequalities, Quantum 2, 81 (2018).

[76] M. Horodecki, P. Horodecki, and R. Horodecki, Asymptotic
Manipulations of Entanglement can Exhibit Genuine
Irreversibility, Phys. Rev. Lett. 84, 4260 (2000).

[77] P. W. Shor, J. A. Smolin, and B. M. Terhal, Nonadditivity
of Bipartite Distillable Entanglement Follows from a
Conjecture on Bound Entangled Werner States, Phys.
Rev. Lett. 86, 2681 (2001).

[78] P. W. Shor, J. A. Smolin, and A. V. Thapliyal, Super-
activation of Bound Entanglement, Phys. Rev. Lett. 90,
107901 (2003).

PHYSICAL REVIEW LETTERS 125, 040502 (2020)

040502-7

https://doi.org/10.1007/s00220-011-1282-1
https://doi.org/10.1103/PhysRevA.69.020301
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.69.022309
https://doi.org/10.1103/PhysRevA.69.022309
https://doi.org/10.1002/cpa.3160200209
https://arXiv.org/abs/1907.02552v3
https://arXiv.org/abs/1809.09592v1
https://doi.org/10.1103/PhysRevA.72.022310
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevA.40.4277
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1103/PhysRevLett.80.5239
https://doi.org/10.1137/1038003
https://doi.org/10.1103/PhysRevA.75.012338
https://doi.org/10.4086/toc.2009.v005a011
https://doi.org/10.1109/TIT.2015.2439953
https://doi.org/10.1109/TIT.2015.2439953
https://doi.org/10.1103/PhysRevA.98.022335
https://doi.org/10.1103/PhysRevA.98.022335
https://doi.org/10.1109/TIT.2019.2943858
https://doi.org/10.1109/TIT.2019.2943858
http://hdl.handle.net/10453/127996
http://hdl.handle.net/10453/127996
http://hdl.handle.net/10453/127996
https://doi.org/10.1103/PhysRevLett.124.090505
https://doi.org/10.1103/PhysRevLett.124.090505
https://arXiv.org/abs/1911.07433
https://doi.org/10.1007/s11080-005-0920-5
https://doi.org/10.1007/s11080-005-0920-5
https://doi.org/10.22331/q-2018-08-13-81
https://doi.org/10.1103/PhysRevLett.84.4260
https://doi.org/10.1103/PhysRevLett.86.2681
https://doi.org/10.1103/PhysRevLett.86.2681
https://doi.org/10.1103/PhysRevLett.90.107901
https://doi.org/10.1103/PhysRevLett.90.107901

