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Dicing soft solids with a sharp knife is quicker and smoother if the blade is sliding rapidly parallel to its
edge in addition to the normal squeezing motion. We explain this common observation with a consistent
theory suited for soft gels and departing from the standard theories of elastic fracture mechanics relied on
for a century. The gel is assumed to fail locally when submitted to stresses exceeding a threshold σ1. The
changes in its structure generate a liquid layer coating the blade and transmitting the stress through viscous
forces. The driving parameters are the ratio U=W of the normal to the tangential velocity of the blade, and
the characteristic length ηW=σ1, with η the viscosity of the liquid layer. The existence of a maximal value of
U=W for a steady regime explains the crucial role of the tangential velocity for slicing biological and other
soft materials.

DOI: 10.1103/PhysRevLett.125.038002

Cutting soft materials has been done since the Early
Stone Age and today is encountered in a large range of
processes, from precision surgery [1] to histology [2] to
food industry [3,4]. It also occurs in everyday life, where it
is commonly observed that cutting cheese or meat is made
much easier by sliding rapidly the knife parallel to the
surface to be cut [5]. Pulling the edge of a sharp knife on an
elastic material yields a very large stress because a finite
force (per unit length along the edge) is exerted at the
contact line. A supplementary sliding of the knife along this
contact line produces an additional shear stress. The
resulting tensile stress is far more efficient than the
compressive stress produced by the single normal displace-
ment of the knife. Hence, cutting soft materials is facilitated
by the sliding, requiring a much lower normal force
compared to a simple compression [6]. Beyond this base
explanation, the origin of a critical tensile stress needed for
cutting a soft gel, as well as the effect of the tangential
velocity of the blade, is not yet elucidated. The explanation
is necessarily related to the specific properties shared by the
class of material considered here, i.e., soft gels. It must be
consistent with the large deformations these materials can
usually withstand before being cut. In addition, due to the
low values of the stresses involved during the failure of
these weak solids, macroscopic length scales emerge, for
instance for the energy dissipation zone [7,8]. Hence, a
consistent description of the dissipative zone is required to
properly describe the mechanics of the cutting. Indeed, the
effect of the velocity of the blade is likely to be closely
related to the rate of energy dissipation. For these reasons,
the physics of slicing soft gels with a sharp wedge has little
chance of being well captured by the overspread theory of
the linear elastic fracture mechanics or even its extension to
the large deformations [9,10].

Here, we give a coherent explanation of the role of the
tangential velocity of the blade during the slicing of a soft gel
based on a self-consistent theory. The basis of the idea is as
follows. We consider a model material that can withstand
stress until a given maximum value, called σ1 here and
defined more accurately later. For stresses lower than this
maximum, the material under consideration can return
reversibly to its unperturbed state when unstressed. For
stresses larger than σ1, the material melts like a solid above
themelting temperature. This is a reasonable assumption for
gels because gels are made of a network filling a liquid
(usually water). Once a big enough proportion of links is
broken, the network disappears and the gel becomes a liquid
suspension of small particles without the cohesiveness of a
solid. Obviously, this description does not take into account
a likely transition from solid to liquid through a kind of
intermediate state, which certainly takes place, but we
assume that the thickness of the transition region is small
enough to be neglected, at least in a first approximation.
Moreover, to simplify the matter, we shall consider steady
state situations only. The material can melt reversibly or
irreversibly. If it does reversibly, it heals once the stress
decreases below σ1, recovering its elastic properties [11,12].
If not, it remains permanently melted whatever the forth-
coming changes of the stress [12]. It is also possible that the
gel cannot stand stress beyond a critical value without
expelling some of its liquid part by permeation [13]. Most
likely the two phenomena (melting and permeation) occur
simultaneously in a stressed gel. The different possible
mechanisms inducing the formation of the liquid layer do
notmake a differencewith the cuttingmechanismconsidered
here, and so we consider these possibilities as a single one.
The physical explanation of why it is easier to cut soft

materials by sliding the knife rapidly parallel to itself

PHYSICAL REVIEW LETTERS 125, 038002 (2020)
Editors' Suggestion

0031-9007=20=125(3)=038002(5) 038002-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3255-2259
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.038002&domain=pdf&date_stamp=2020-07-15
https://doi.org/10.1103/PhysRevLett.125.038002
https://doi.org/10.1103/PhysRevLett.125.038002
https://doi.org/10.1103/PhysRevLett.125.038002
https://doi.org/10.1103/PhysRevLett.125.038002


follows from our assumption that the material to be cut
cannot stand stresses beyond a critical value. Such a stress
is transmitted from the knife to the gel by a thin viscous
layer of liquid made either by the broken gel and/or by
expelled liquid (Fig. 1). This stress depends on viscosity,
knife velocity, and the geometry of the layer. It includes a
component coming from the normal motion of the knife
toward the gel, but also a component due to the sliding
motion, usually at a far bigger velocity than in the cutting
direction.
We consider a thin blade consisting of a sharp wedge

with an infinitely small angle so that its geometry can be
approached, in a first approximation, as a half plane of zero
thickness. This half plane (the blade) is assumed to move
parallel to its own plane both in the z direction (the sliding
motion) and inward the gel in the x direction perpendicular
to the edge (Fig. 1). Lastly, y is the direction perpendicular
to the plane of the knife. Let U be the velocity of the knife
in the direction of cutting and W the velocity of slicing in
the z direction. We consider a steady state, namely when the
knife has advanced for a sufficiently long time to have
made a self-reproducing groove in the gel ahead of it.
Therefore, the half plane y ¼ 0, x < 0 made by the
idealized knife advances at zero speed in the frame moving
with the knife, whereas the gel advances at speed (−W) in
the sliding direction and (−U) toward the knife. The half
plane is coated by the layer of viscous liquid created by the
destruction of the gel and/or by permeation of its liquid
component. In this liquid, the fluid velocity is assumed to
be small enough to make valid the linear Stokes equation.
The fluid velocity can be split into two components: the
velocity component ðu; vÞ in the ðx; yÞ plane and the
velocity component in the z direction, w [14]. From the
incompressibility condition,

u;x þ v;y ¼ 0; ð1Þ

where u;x ¼ ∂u=∂x, etc., Stokes equation is

ηðu;xx þ u;yyÞ ¼ p;x; ð2Þ

ηðv;xx þ v;yyÞ ¼ p;y; ð3Þ

w;xx þ w;yy ¼ 0; ð4Þ

with p the pressure and η the shear viscosity of the liquid.
Now we have to give the boundary conditions. One set of
boundary conditions is imposed on the surface of the knife,
namely on the half plane y ¼ 0, x < 0. In the frame of
reference of the knife, the fluid velocity is just zero on
this boundary (see Fig. 1). This amounts to imposing
ðu; v; wÞ ¼ ð0; 0; 0Þ on y ¼ 0, x < 0. Let Γ be the curve
making the cross section of the interface between the gel
and the liquid layer. This is a line in the plane ðx; yÞ, and we
impose the continuity of the flux of matter across this line
and the continuity of stress. Let us consider first the
continuity of matter. This is done by enforcing that when
the gel transforms into liquid, mass is conserved: the flux of
matter on the gel side is equal to the flux of liquid on the
other side. Because the mass density is almost the same on
both sides of Γ, continuity of the flux of matter is equivalent
to the continuity of velocity. On the side of the gel, the
velocity is just the velocity of the frame of reference of
the knife. In Cartesian coordinates, this is the velocity
ð−U; 0;−WÞ. This also makes the boundary conditions for
the velocity field in the liquid on Γ: ujΓ ¼ −U, vjΓ ¼ 0, and
wjΓ ¼ −W (Fig. 2). Given Γ, this yields the right number of
conditions for the problem.
We have now to write the condition that determines Γ.

This condition is that the stress on Γ is exactly at the given
critical value σ1. Since the gel is mainly composed of
solvent, the same as the liquid phase, the interfacial tension
between the two phases is negligible in a first approxima-
tion [15], and the stress has to take the same value on the gel
side and on the liquid side of the boundary. The Cauchy
stress tensor in the liquid phase is σ ¼ σ̃ þ pI with I the
identity tensor and σ̃ the deviatoric stress given by the
standard formulas for viscous fluids [14],

σ̃ ¼ η

0
B@

2u;x u;y þ v;x w;x

u;y þ v;x 2v;y w;y

w;x w;y 0

1
CA: ð5Þ

It remains to give the expression of the critical stress, ΣðσÞ,
that is to be made equal to the critical value σ1. For a
isotropic solid, this stress has to be independent of the
choice of coordinates and hence to be a function of the
invariants of σ. Several expressions are possible, and we
consider here the widespread von Mises criterion, which
amounts to assuming that failure occurs as the elastic
energy density of distortion reaches a critical value [16].
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FIG. 1. (a) Sketch of a blade moving at velocityU in the cutting
(normal) direction x, and velocity W in the sliding direction z
(parallel to the initial surface of the gel). The shape of the liquid-
gel interface in plane (yz) is represented by the curve Γ. (b) View
in plane (xz): in the frame moving with the blade, gel velocity is
−U along x and −W along z. The system is assumed to be
invariant along z.
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Other criteria, such as the Tresca criterion based on the
maximum shear stress or the maximum principal stress
criterion [17], could be considered as well. The von Mises
stress Σ, taken here as measure of the stress, is defined by
Σ2 ¼ 3

2
trðσ̃2Þ [17,18]. In the geometry in consideration, this

yields the following:

Σ2 ¼ 3η2ðw2
;x þ w2

;y þ v2;x þ u2;y þ 4u2;x þ 2v;xu;yÞ: ð6Þ

The equation of the curve Γ is found by imposing

jΣj ¼ σ1 ð7Þ

on Γ, σ1 being a given positive quantity with the physical
dimension of a stress.
Taking l ¼ ffiffiffi

3
p

ηW=σ1 as unit length and W as unit
speed, Eqs. (1)–(4) and (7) can be reformulated with a
unique parameter, the ratio ζ ¼ U=W of the sliding velocity
to the cutting velocity. Taking σ1 of the order of magnitude
of the shear modulus of a soft hydrogel (a reasonable
assumption for polymeric gels) e.g., σ1 ¼ 100 Pa, and
η ¼ 10 mPa s (the liquid layer being a mixture of water
and molecules resulting from gel breakage), we find, with
W ¼ 1 ms−1 for the tangential velocity, l ¼ 0.1 mm, a
small but measurable macroscopic length.
In the following, the thickness h of the liquid layer along

the blade (far behind the edge), the distance a between the
edge of the blade and the tip of the notch, and the radius of
curvature r0 of the gel surface at the tip (see Fig. 2) are
computed as functions of ζ and l.
Let us first consider the special situation in which the

blade is pushed normally toward the gel without sliding,

W ¼ 0. Due to mirror symmetry with respect to plane
y ¼ 0, u;y ¼ 0 and v ¼ 0 along axis y ¼ 0 for x > 0 (see
Fig. 2); hence, Eq. (7) simplifies in Σ2 ¼ 12η2u2;x or
equivalently [from Eq. (1)] Σ2 ¼ 12η2v2;y (x > 0 and
y ¼ 0). The tangent of Γ at ðx; yÞ ¼ ða; 0Þ being parallel
to y by symmetry, one deduces from vjΓ ¼ 0 that v;y ¼ 0 at
ðx; yÞ ¼ ða; 0Þ and, then, that the stress Σ at ðx; yÞ ¼ ða; 0Þ
has to be equal to zero. Since σ1 ≠ 0, the condition Σ ¼ σ1
on Γ cannot be fulfilled. This means that no stationary state
exists for W ¼ 0 and highlights the overriding role played
by the sliding of the blade.
Note that in this case (W ¼ 0), Σ is the unique nonzero

scalar invariant of σ̃ and that taking the von Mises criteria
among the other criteria does not limit the generality.
In what follows, the tangential velocity is nonzero. Far

behind the edge of the blade (x ≪ −l), derivatives along x
direction are zero and uðyÞ is parabolic. According to the
boundary conditions at y ¼ 0 and y ¼ h and the incom-
pressibility condition (the average value of u along y is
equal to −U), u ¼ −Uð4y=h − 3y2=h2Þ. This is a simple
combination of Couette and Poiseuille flows, the pressure
gradient along the x direction being constant. In addition,
v ∼ 0 and wðyÞ is linear (Couette flow), w ¼ −Wy=h. One
concludes that, far from the edge of the blade (x ≪ −l),
jΣj ∼ ðη=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð4U2 þW2Þ

p
and from Eq. (7), the thickness

of the liquid layer along the blade is

h ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ζ2

p
: ð8Þ

Eqs. (1)–(4) and Eq. (7) are solved using the finite-element
method, implemented in the open-source finite-element
library FEniCS [19]. We adopt a set of units such that l ¼ 1
and W ¼ 1. Assuming reflectional symmetry, we consider
domains Ω defined by

ðx; yÞ ∈ Ω ⇔ 0 ≤ y ≤ h and xmin ≤ x ≤ ΓðyÞ ð9Þ

ΓðyÞ is a decreasing function for y ∈ ½0; h�. xmin is the lower
x coordinates considered in the simulation [xmin < ΓðhÞ,
see Fig. 2]. Boundary conditions are detailed in Fig. 2. We
take for ΓðyÞ a series expansion in the form

ΓðyÞ ¼
Xn−1
k¼0

α2kðy=hÞ2k þ αn
Xm
k¼n

ðy=hÞ2k: ð10Þ

Coefficients α2k are fitted in order to fulfill Eq. (7). The fits
are done by carrying out a systematic exploration of the
coefficients αk and by minimizing the variance s2 ¼
ð1=0.95hÞ R 0.95h

0 ½ðΣðyÞ − σ1Þ2=σ21�dy. The last sum in
Eq. (10) has no significant effect on the best ΓðyÞ except
for y ∼ h: neither a change in n (provided that n > 8) nor a
change in m (provided that m > 30) has an effect on the
values found for α0 or α2.

FIG. 2. Domain Ω defined by Eq. (9) for the computation of the
velocities (colored in light blue). Black solid line is the liquid-gel
interface, referred as Γ. The blade is in pink. a is the distance
between the edge of the blade and the tip of the notch. r0 is the
radius of curvature at the tip, and h is the thickness of the liquid
layer far from the tip. The boundary conditions (marked in blue)
are u, v, w ¼ 0 for y ¼ 0 and xmin < x < 0; ∂ðu; wÞ=∂y ¼ 0 and
v ¼ 0 for y ¼ 0 and 0 < x < Γð0Þ; u ¼ −U, v ¼ 0 and w ¼ −W
for x ¼ ΓðyÞ or y ¼ h.
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Figure 3 gives an example, for ζ ¼ 0.2, of the reduced
stress Σ=σ1 calculated after the fitting procedure. As
required, Σ=σ1 is almost constant and equal to one.
Figure 3(a) shows that the variance s2 calculated for the
best fit starts to increase rapidly beyond a threshold value of
ζ, ζ� ≃ 0.24. This indicates that solution of Eq. (7) exists
only for ζ < ζ�, i.e., for U < 0.24W, suggesting that steady
states exist only if the sliding velocity is large enough
compared to the normal velocity, W > U=0.24.
The reduced normal distance a=l ¼ α0 and the reduced

radius of curvature r0=l ¼ h2=ð2α22Þ are plotted as a
function of ζ (for ζ < ζ�) in Fig. 3(b). The rate of increase
of r0=l as a function of ζ is lower than the rate for h=l: the
profile of the notch is less blunt as ζ increases. Velocity
components and pressure computed for ζ ¼ 0.2 are shown
in Fig. 4.
To summarize, the cut made by pressing and sliding a

sharp wedge on a soft material has been described by
considering the viscous liquid layer surrounding the wedge.
This layer results from the transformation of the soft solid
to a liquid when the applied stress exceeds a prescribed
value. The stress exerted on the wedge is transmitted to the
soft solid by the liquid layer, hence the prevailing role of the
wedge velocities in the cutting process.
No steady state in the melting of the solid can be induced

by a pure normal indentation of the sharp wedge (W ¼ 0).
Indeed, a steady regime requires a large enough ratio of the
sliding velocity to the normal velocity. The maximal value
of the normal velocity (the cutting speed) is proportional to
the tangential velocity, Umax ≃ 0.24W. Hence, the maxi-
mum cutting speed is directly related to the sliding velocity:
quicker dicing requires higher tangential velocity.
For given imposed normal and tangential velocities in a

steady regime, the condition that the critical stress of the
gel has to be reached fixes the shape of the transition zone.

The thickness of the fluid layer far behind the edge of the
blade, the thickness in the direction normal to the edge, and
also the minimal radius of curvature of the transition
zone have been computed. These lengths are determined
by the fluid-gel interaction and not by the elasticity of the
gel alone.
Whether the deformations of the solid phase are large or

small does not matter in the theory, the important property
being that the gel remains elastic until a critical stress is
reached. In that sense, the theory fundamentally departs
from standard theories of fracture mechanics that are based
on the calculation of elastic deformations together with an
estimation of the energy release rate taking place in the
plastic zone.
Extending the theory introduced here to unsteady states

would be useful to capture the nucleation stages, to unfold
the cases in which steady states do not exist (e.g., normal
dicing), and to explain how a tangential vibration can
improve dicing, as evidenced in the puncture of soft gels
[20,21] or in surgery [22,23].
Experiments should now be carried out in order to test

these predictions, for instance by characterizing geometri-
cal properties of the liquid layer and by evidencing the
minimal tangential to normal velocity ratio for a steady
regime in the cutting.
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