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We numerically demonstrate that the topological corner states residing in the corners of higher-order
topological insulator possess non-Abelian braiding properties. Such topological corner states are Dirac
fermionic modes other than Majorana zero modes. We claim that Dirac fermionic modes protected by
nontrivial topology also support non-Abelian braiding. An analytical description on such non-Abelian
braiding is conducted based on the vortex-induced Dirac-type fermionic modes. Finally, the braiding
operators for Dirac fermionic modes, especially their explicit matrix forms, are analytically derived and
compared with the case of Majorana zero modes.
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Introduction.—Higher-order topological insulator
(HOTI) [1–4] has been drawing great attention for pos-
sessing novel boundary states including topological corner
state [2,5,6] and topological hinge state [1,3]. As the bound
state localized at the spatial boundary of the gapped 1D
topological edge state, topological corner state can be
viewed as an incarnation of the celebrated Jackiw-Rebbi
zero mode [7–10] in 2D or 3D condensed matter systems.
As one of the fascinating properties of Jackiw-Rebbi
zero modes, the charge fractionalization has also been
widely investigated for topological corner states in HOTI
[1–3,6,11]. Another fascinating property of the Jackiw-
Rebbi zero mode is its non-Abelian statistics [9,10,12,13]
that a non-Abelian geometric phase highly related to the
nontrivial topology is accumulated [14–16] during the
braiding. The non-Abelian braiding statistics [17–19] is
of great significance not only for its theoretical novelty
beyond Fermi-Dirac statistics and Bose-Einstein statistics,
but also for its possible application in the field of fault-
tolerant topological quantum computation [19–24].
However, in the past three decades, the researches on the

non-Abelian braiding statistics of quasiparticles in con-
densed matter systems mainly concentrated on the
Majorana zero mode (MZM) [17–20,25–29]. In the field
of topological corner states in HOTI, the non-Abelian
braiding statistics has also only been investigated
when superconducting pairing potential is presented
[16,26,30], in which the topological corner states are
self-conjugate and therefore are actually MZMs

[10,18,19,25]. Nevertheless, the Majorana condition is
not indispensable for the non-Abelian statistics
[10,31,32]. Moreover, with the superconductivity-free con-
dition, the experimental device is generally easier to
fabricate and with a larger bulk gap. In fact, the
Majorana condition is absent for a number of platforms
supporting topological corner states such as the higher-
dimensional Su-Schrieffer-Heeger (SSH) lattice [2,8,33]
and the graphenelike structure [5,11]. In view of this, it is of
significant importance to investigate the possible non-
Abelian statistics of topological corner states in a HOTI
without superconductivity.
In this Letter, we first perform a numerical simulation

demonstrating the non-Abelian braiding properties of the
HOTI’s topological corner states based on a 2D SSH
model. Because of the absence of the Majorana condition,
such topological corner states are actually Dirac fermionic
modes protected by the topology. Such localized Dirac
fermionic modes in 2D topological system also appear as
the vortex-bounded states in a quantum anomalous Hall
insulator (QAHI), where the non-Abelian nature of the
topologically protected Dirac fermionic modes is proved in
an analytical way. Compared with the MZMs, the degen-
eracy of the Dirac fermionic modes could be removed by
local perturbations. Though such degeneracy lifting indu-
ces a unitary transformation of the eigenstate basis where
the braiding matrices live, the non-Abelian nature of the
Dirac fermionic modes still remains. Finally, we demon-
strate that the braiding operators for Dirac fermionic modes
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as well as their matrix forms in the Fock space sectors are
different from those of the MZMs [18] and the bosonic
modes [32], although their geometric phases accumulated
during the braiding have the same form.
Non-Abelian braiding of topological corner states.—As

the minimal model of HOTI, the two-dimensional gener-
alization [2,33] of the SSH model [8] is an ideal platform
demonstrating the non-Abelian braiding properties of
HOTI’s topological corner states. The Hamiltonian
of the 2D SSH model, hSSHðpÞ ¼ ðγ þ λ cospxÞτxσ0 −
λ sinpxτyσz − ðγ þ λ cospyÞτyσy − λ sinpyτyσx [2], can
be discretized in a square lattice (τ and σ for Pauli
matrices), in which gapped 1D topological edge states
and four topological corner states are presented in the
nontrivial phase jγ=λj < 1. Remarkably, each plaquette in
this 2D SSH model contains a π flux.
A cross-shaped junction supporting the braiding oper-

ation [10,27,34] is composed of four arms, each a topo-
logically nontrivial 2D SSH lattice with the size of
Nx × Ny, and three voltage gates (G1, G2, and G3) located
near the cross point [Fig. 1(a)]. Each arm of this junction
can be isolated from the others by the potential barrier
induced by the presence of the corresponding gate voltage.
For example, before the braiding, gate voltages in G1 and
G3 are turned on, while gate voltage in G2 is turned off;
therefore the cross-shaped junction is divided into three

separated parts and 12 topological corner states ψe
i are

presented as shown in Fig. 1(a) [edge index e ¼ tðbÞ for
corner states on the top (bottom) edge, i ¼ 1; 2;…; 6]. Here
we choose Ny ≫ Nx > ξ, where ξ is the localization length
of the topological corner states. In this way, the coupling
between the top and the bottom edges can be neglected;
hence, these 12 corner states are separated into two
identical sets as ψ t

i’s on the top edge and ψb
j ’s on the

bottom edge (i; j ¼ 1; 2;…; 6). By adiabatically [35] tun-
ing the gate voltages in three steps [10,27,34], the spatial
positions of two topological corner states ψ t

2 and ψ
t
3 as well

as the positions of ψb
2 and ψb

3 can be swapped simulta-
neously. In the first step, the gate voltage in G1 is
adiabatically turned off at first, so that both ψ t

2 and ψb
2

become extended states spatially distributed across two
arms. After that, the gate voltage in G2 is adiabatically
turned on; therefore ψ t

2 (ψ
b
2) becomes localized on the top

(bottom) edge at the back side ofG2. In the second step,G3
is adiabatically turned off and then G1 is adiabatically
turned on; hence ψ t

3 (ψb
3) moves to the initial position

of ψ t
2 (ψ

b
2). In the final step, the swapping is accomplished

by adiabatically turning off G2 then turning on G3
(for schematic illustration of the braiding process, see
Supplemental Material [35]). The time cost for such
swapping process is Ts.
Because of the finite-size-induced coupling between

ψe
2i−1 and ψe

2i (e ¼ t, b, i ¼ 1, 2, 3), the eigenstates of
the cross-shaped junction before braiding (t ¼ 0) are
symmetric and antisymmetric states as ψe;�

12 ¼ ð1= ffiffiffi
2

p Þ
ðψe

1 � e−iα
e
12ψe

2Þ and ψe;�
34 ¼ ð1= ffiffiffi

2
p Þðψe

4 � e−iα
e
34ψe

3Þ,
where αe12 and αe34 are arbitrary phases [12]. During the
whole braiding process, ψe

2 and ψe
3 (e ¼ t, b) are swapped

twice in succession. Though all these corner states even-
tually come back to their initial spatial positions, the
eigenstate before braiding jψe;�

2i−1;2iðt ¼ 0Þi evolves
into jψe;�

2i−1;2iðtÞi ¼ UðtÞjψe;�
2i−1;2iðt ¼ 0Þi, where UðtÞ ¼

T̂ exp½i R t0 dτHðτÞ� is the time evolution operator (T̂ for
time-ordering operator). For example, the eigenstate
jψ t;−

12 ðt ¼ 0Þi before braiding evolves into another eigen-
state as jψ t;−

12 ðt ¼ 2TsÞi ¼ jψ t;þ
12 ðt ¼ 0Þi [Fig. 1(b)], imply-

ing that an additional π phase is picked up as ψ t
2 → −ψ t

2.
In the same way, by investigating the time evolution of
other eigenstates [e.g., jψb;−

34 ðtÞi in Fig. 1(c)], we confirm
that ψe

2 → −ψe
2 and ψ

e
3 → −ψe

3 after ψ
e
2 and ψ

e
3 are swapped

twice in succession (e ¼ t, b). As a result, if ψe
2 and ψ

e
3 are

swapped once only, their non-Abelian nature is exhibited
as ψe

2 → ψe
3 and ψ

e
3 → −ψe

2 (up to a gauge transformation).
In brief, the topological corner states here are two identical
sets of Dirac fermionic modes being braided simultane-
ously and exhibiting identical braiding properties.
Such braiding properties are reminiscent of the fact that

swapping two MZMs γ2 and γ3 leads to γ2 → γ3 and γ3 →
−γ2 [18]. However, a significant difference between
MZMs and Dirac fermionic modes is that the zero-
energy degeneracy between MZMs is protected by the

FIG. 1. (a) Sketch of the cross-shaped junction formed by four
arms, each a 2D SSH square lattice in the size of Nx × Ny and
three gates G1, G2, and G3. The red (green) bond denotes
hopping strength γ (λ). The dashed bond denotes hopping term
with negative sign. Spatial positions for the six pairs of topo-
logical corner states before braiding are shown as large spheres
(three pairs on the top edge ψ t

i¼1;2;…;6 and three pairs on the
bottom edge ψb

i¼1;2;…;6, respectively). (b),(c) Evolution of the
wave functions (b) jψ t;−

12 ðtÞi and (c) jψb;−
34 ðtÞi during the whole

braiding process that ψe
2 and ψe

3 (e ¼ t, b) are swapped twice in
succession. Parameters of the numerical calculations in (b) and
(c) are Nx ¼ 5, Ny ¼ 40, λ ¼ 1.0, γ ¼ 0.1, and Ts ¼ 1200.
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superconductivity-related particle-hole symmetry, while
the degeneracy between Dirac fermionic modes could be
lifted by local perturbations (if the local perturbations break
the particle-hole-like symmetry of the 2D SSH lattice). For
instance, in the presence of local perturbations, the effective
Hamiltonian describing ψ t

1 and ψ
t
2 is generally modified as

Heff ¼ ðμþ ΔÞðψ t
1Þ†ψ t

1 þ ðμ − ΔÞðψ t
2Þ†ψ t

2

þ ½ϵ12eiαt12ðψ t
1Þ†ψ t

2 þ H:c:�; ð1Þ

where μ� Δ are the perturbation-induced on-site energies
for ψ t

1 and ψ t
2, respectively. The eigenstates formed by

ψ t
1 and ψ t

2 are now in the new forms as φt;�
12 ¼

ð1= ffiffiffi
2

p Þf½cosðδ=2Þ � sinðδ=2Þ�ψ t
1 þ e−iα

t
12 ½� cosðδ=2Þ −

sinðδ=2Þ�ψ t
2g with eigenenergies ϵ�12 ¼ μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ϵ212

p
,

where δ ∈ ½−ðπ=2Þ; ðπ=2Þ� is defined as sin δ ¼
ðΔ=ϵ12Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ=ϵ12Þ2 þ 1

p
and cos δ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ=ϵ12Þ2 þ 1

p
.

Consequently, the degeneracy lift leads to a unitary trans-
formation between the new set of eigenstates φt;�

12 and the
former set of the eigenstates ψ t;�

12 : 
φt;−
12

φt;þ
12

!
¼
 
cos δ

2
− sin δ

2

sin δ
2

cos δ
2

! 
ψ t;−
12

ψ t;þ
12

!
: ð2Þ

However, the non-Abelian statistics describing the non-
commutativity of the braiding operations does not depend
on the specific choice of the set of eigenstates. In fact,
numerical simulation has shown that swapping ψ t

2 and
ψ t
3 twice in succession will lead to jφt;−

12 ðt ¼ 2TsÞi ¼
− sin δjφt;−

12 ðt ¼ 0Þi þ cos δjφt;þ
12 ðt ¼ 0Þi in the presence

of disorder effect [10]. It is still equivalent to the previously
proved braiding properties ψ t

2 → ψ t
3 and ψ t

3 → −ψ t
2 when

ψ t
2 and ψ t

3 are swapped once. From another point of view,
the geometric phase accumulated during the braiding is
independent of the degeneracy; the only thing we need
to be concerned with is the nonvanishing dynamic phase
due to the energy deviation (experimentally, it might
be eliminated by symmetric braiding protocol [51]).
Consequently, the non-Abelian nature remains valid even
if the degeneracy is removed, though the experimental
observables may change their forms.
Analytical description on the non-Abelian braiding.—

Although the non-Abelian braiding properties of HOTI’s
topological corner states have been numerically demon-
strated, an analytical description on such braiding, espe-
cially on the relation between the non-Abelian braiding
and the nontrivial topology, is still highly needed. We note
that the wave function of the topological corner state, for
example, in the lower left-hand corner of the 2D
SSH lattice and with vanishing momentum, has the form
of ψcorðx; yÞ ¼ Ccorðe−x=ξcorþ − e−x=ξ

cor
− Þðe−y=ξcorþ − ey=ξ

cor
− Þ

ð0; 1; 0; 0ÞT , where ξcor� ¼ ½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ð1þ γ=λÞp

=2ð1þ
γ=λÞ� are the localization lengths (γ=λ > −1 is required)

and Ccor is the normalization constant. The spatial part of
such wave function is reminiscent of the other Dirac-type
topological states, such as the vortex-induced bound state
[31,52,53], which is also a zero-dimensional localized
state in a 2D topological system. The Dirac-type bound
state possessing zero energy is presented with the half-flux
vortex, which is also in parallel with the π flux in each
plaquette of the 2D SSH model. As we will show below,
the 2D topological system with vortices could be served as
an additional model proving the non-Abelian nature of
the topologically protected Dirac fermionic modes in an
analytical fashion. (In comparison, the swap of particles’
spatial positions is prohibited in a strict 1D system.)
Specifically, considering a QAHI, hQAHIðpÞ ¼ Aðpxσx −

pyσyÞ þ ðM − Bp2Þσz [54,55], with two holes punched,
where the first hole is placed at the origin, while the second
one is at q [Fig. 2(a)]. Both holes have a radius R (R ≪ jqj)
and are threaded by half-flux ϕ ¼ ϕ0=2 (ϕ0 ¼ h=e for
flux quantum) so that two vortices are formed. A Dirac
fermionic mode [53] with vanishing momentum is local-
ized at the first vortex as ψvor

1 ðrÞ ¼ ðCvor=
ffiffiffi
r

p Þ
½e−ðr−RÞ=ξvorþ − e−ðr−RÞ=ξvor− � exp½−ðie=ℏÞΩðrÞ�ðeiθ; iÞT ,
where ξvor� ¼ ðA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 4MB

p
=2MÞ are the localization

lengths and Cvor is the normalization constant [35]. The
vector potential induced by the second vortex has been
taken into consideration as the gauge field [35,56],

ΩðrÞ ¼

8>><
>>:

ℏ
2e arctan

h
ðr−qÞ·ŷ
ðr−qÞ·x̂

i
ðr − qÞ · x̂ > 0

ℏ
2e

�
arctan

h
ðr−qÞ·ŷ
ðr−qÞ·x̂

i
þ π

�
ðr − qÞ · x̂ < 0;

ð3Þ

where x̂, ŷ denotes the unit vector along the x and y
direction, respectively. There is a branch cut [18] of the
gauge field ΩðrÞ along the −ŷ direction [Fig. 2(b)] and the
phase jump across the branch cut is πℏ=e.
Similarly, the wave function of the Dirac fermionic mode

bounded with the second vortex is denoted as ψvor
2 ðr − qÞ,

in which the gauge field induced by the first vortex has also
been included. If the (relative) spatial positions of these two
vortices are swapped through a counterclockwise rotation,

FIG. 2. (a) Schematic plot of two vortices with radius R and
magnetic flux ϕ ¼ ϕ0=2 ¼ πℏ=e threaded in a QAHI. (b) Gauge
field ΩðrÞ with a branch cut along the −ŷ direction.
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then the first Dirac fermionic mode passes through the
branch cut of the second vortex [18] and acquires an
additional π phase, while the second Dirac fermionic mode
does not go through the branch cut of the first vortex (see
Supplemental Material [35] for schematic plot). Therefore,
we analytically obtain the braiding properties of these Dirac
fermionic modes as

ψvor
1 ðrÞ → ψvor

2 ðr − qÞ;ψvor
2 ðr − qÞ → −ψvor

1 ðrÞ; ð4Þ

which is exactly the same as the topological corner states in
HOTI as expected. This analytical derivation unambigu-
ously demonstrates that the non-Abelian braiding here
comes from the flux-induced geometric phase. We con-
clude that non-Abelian braiding can also be exhibited for
Dirac fermionic modes, provided that nontrivial topology
[14,15] is presented. Remarkably, identical non-Abelian
behaviors are also presented for half-flux vortices in
quantum spin Hall insulator (2D TI) [52], which is two
copies of QAHIs related by time-reversal (TR) symmetry.
Braiding operator for Dirac fermionic mode.—Based on

the investigation on both the topological corner states in
HOTI and the Dirac-type bound states in QAHI, we have
shown that an operation Ti swapping two Dirac fermionic
modes ψ i and ψ iþ1 will give rise to ψ i → ψ iþ1,
ψ iþ1 → −ψ i, ψ j → ψ j (j ≠ i and j ≠ iþ 1), which is
similar to the braiding properties of MZM [18] and bosonic
mode [32]. Nevertheless, the braiding operator τðTiÞ for
Dirac fermionic modes obeying τðTiÞψ j½τðTiÞ�−1 ¼ Tiðψ jÞ
has the explicit form of

τðTiÞ ¼ exp

�
π

2
ðψ†

iþ1ψ i − ψ†
iψ iþ1Þ

�
; ð5Þ

in which τðTiÞψ i½τðTiÞ�−1 ¼ ψ iþ1 as well as
τðTiÞψ iþ1½τðTiÞ�−1 ¼ −ψ i can be proved by adopting the
Baker-Hausdorff formula [35]. In comparison, the braiding
operators are τðTiÞ ¼ exp½ðπ=2Þðb†iþ1bi − b†i biþ1Þ� for
bosonic mode [32] and τðTiÞ ¼ exp½ðπ=4Þγiþ1γi� for
MZM [18], where bi and γi are bosonic and Majorana
operators, respectively. If each Dirac fermionic mode is
decomposed into two MZMs with different “flavors” as
ψ i ≡ 1

2
ðγai þ iγbi Þ (a, b for flavor indices), then the

equivalent form of Eq. (5) as τðTiÞ ¼ exp½ðπ=4Þγaiþ1γ
a
i �

exp½ðπ=4Þγbiþ1γ
b
i � is the tensor product of Majorana braid-

ing operator with different flavors.
Such tensor product form implies that the crucial differ-

ence between the non-Abelian statistics of the MZM and
the Dirac fermionic mode lies in their quantum dimensions.
For instance, for a Majorana system composed of four
MZMs, the quantum dimension is 22 ¼ 4 and its Fock
space could be divided into two two-dimensional sectors
with different fermion parities. All the braiding operators
are block diagonal because the braiding operations con-
serve the fermion parity [18]. Moreover, the braiding

operators have very similar matrix forms in both these
two sectors [18]. In contrast, the Fock space for a fermionic
system composed of four Dirac fermionic modes (ψ1, ψ2,
ψ3, and ψ4) is in the quantum dimension of 24 ¼ 16 [31].
Such a Fock space can be divided into five sectors, each
labeled by a different fermion number Nf ¼ 0, 1, 2, 3, 4
and with a different quantum dimensionC0

4, C
1
4, C

2
4, C

3
4, C

4
4.

The Dirac fermionic modes exhibit distinctly different
braiding properties in each of these sectors. As an extreme
example, the sector with fermion number Nf ¼ 4 is one
dimensional as ψ†

1ψ
†
2ψ

†
3ψ

†
4j0i; therefore all the braiding

operations will only give rise to a trivial factor so that the
non-Abelian braiding statistics is absent.
In contrast, the non-Abelian braiding properties are well

exhibited in other sectors with Nf ¼ 1, 2, or 3.
For illustration, in the single-fermion sector, considering
that these four fermionic modes are coupled in the manner
of ψ�

12 ¼ ð1= ffiffiffi
2

p Þðψ1 � e−iα12ψ2Þ and ψ�
34 ¼ ð1= ffiffiffi

2
p Þ

ðψ4 � e−iα34ψ3Þ, the four-dimensional single-fermion sec-
tor can be spanned as ½ðψ−

12Þ†j0i; ðψþ
12Þ†j0i; ðψ−

34Þ†j0i;
ðψþ

34Þ†j0i�T . Without loss of generality, here we set α12 ¼
α34 ¼ ðπ=2Þ (see Supplemental Material [35] for
general discussions), so that Eq. (5) gives rise to
τðT1Þ ¼ exp½ðiπ=2Þðψ−

12Þ†ψ−
12 − ðiπ=2Þðψþ

12Þ†ψþ
12�; hence

τðT1Þðψ�
12Þ†j0i¼∓iðψ�

12Þ†j0i as well as τðT1Þðψ�
34Þ†j0i ¼

ðψ�
34Þ†j0i can be obtained. In such way, we could

write down the matrix forms of the braiding operators in
the single-fermion basis ½ðψ−

12Þ†j0i;ðψþ
12Þ†j0i;ðψ−

34Þ†j0i;
ðψþ

34Þ†j0i�T as

τðT1Þ ¼
�
iσz 0

0 σ0

�
; τðT3Þ ¼

�
σ0 0

0 iσz

�

(σ for Pauli matrix), and

τðT2Þ ¼
1

2

0
BB@

1 1 1 −1
1 1 −1 1

−1 1 1 1

1 −1 1 1

1
CCA; ð6Þ

respectively. All of the two-qubit Pauli rotations [21] σi ⊗
σj (i, j ¼ 0, 1, 2, 3) can be implemented (up to an overall
phase) by combining swapping operations T1, T2, and T3.
Such two-qubit Pauli rotations are naturally the combina-
tion of the single-qubit operations on each set of MZMs
with different flavors. It is worth noting that the τðT2Þ in
Eq. (6) is consistent with the numerical results on the
braiding of HOTI’s topological corner states [Figs. 1(b) and
1(c)] that jψ t;−

12 ðt ¼ TsÞi is the equally weighted super-
position of both jψ t;�

12 ðt ¼ 0Þi and jψ t;�
34 ðt ¼ 0Þi when ψe

2

and ψe
3 (e ¼ t, b) are swapped once (t ¼ Ts). More

importantly, τðT2Þ commutes with neither τðT1Þ nor
τðT3Þ, indicating that they cannot be diagonalized simulta-
neously by any unitary transformation. Such a nondiagonal
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braiding matrix mathematically displays the non-Abelian
nature of the Dirac fermionic modes in an unambiguous
way. Finally, in the double-fermion (Nf ¼ 2) or triple-
fermion sector (Nf ¼ 3), the non-Abelian nature of the
braiding operators could also be proved in a similar
way [35].
Discussion.—We have demonstrated the non-Abelian

braiding properties of topological corner states, a kind of
Dirac fermionic mode protected by nontrivial topology in
HOTI. The non-Abelian nature of the topologically pro-
tected Dirac fermionic mode is proved to be highly related
to its nontrivial topology. The braiding operators of the
Dirac fermionic modes have also been explicitly expressed.
Additionally, these braiding operators are in the distinctly
different matrix forms in the basis with different fermion
number. This is in stark contrast to the MZMs whose
braiding operators are in the similar matrix forms in the
basis of different fermion parity. Alternatively, the Dirac
fermionic modes in our Letter could be viewed as a
composite [56] composed of electron and vortex. In this
way, we can argue that these Dirac fermionic states are
effectively many-body states consisting of both electrons
and vortices as quasiparticles.
Experimentally, the 2D SSH lattice as well as the

braiding operations may be realized through a cross-shaped
junction constructed by topological electric circuit [57–60].
The detailed experimental scheme is exhibited in the
Supplemental Material [35].
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