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We examine the dynamics of small anisotropic particles (spheroids) sedimenting through homogeneous
isotropic turbulence using direct numerical simulations and theory. The gravity-induced inertial torque
acting on sub-Kolmogorov spheroids leads to pronouncedly non-Gaussian orientation distributions
localized about the broadside-on (to gravity) orientation. Orientation distributions and average settling
velocities are obtained over a wide range of spheroid aspect ratios, Stokes, and Froude numbers.
Orientational moments from the simulations compare well with analytical predictions in the inertialess
rapid-settling limit, with both exhibiting a nonmonotonic dependence on spheroid aspect ratio. Deviations
arise at Stokes numbers of order unity due to a spatially inhomogeneous particle concentration field
resulting from a preferential sweeping effect; as a consequence, the time-averaged particle settling
velocities exceed the orientationally averaged estimates.
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Suspended inertial anisotropic particles show up in a
variety of scenarios ranging from pollen dispersion to soot
emission. Prominent examples in nature include ice crystals
suspended in high-altitude cirrus clouds which are a crucial
element in the planetary greenhouse effect [1,2]. The
radiative properties of such clouds depend sensitively on
the orientation distribution of ice crystals [3]. The latter
come in a variety of pristine shapes with sizes ranging from
tens to thousands of microns [4], smaller than the typical
Kolmogorov scales, about a millimeter, for atmospheric
turbulence. Therefore, a first step towards understanding
Cirrus cloud radiation is to examine how sub-Kolmogorov
anisotropic particles orient themselves while sedimenting
in a turbulent flow.
The critical role of turbulence in gravitational settling

has been investigated in-depth only for inertial spherical
particles [5–7]. In this simpler scenario, relevant to the
dynamics of water droplets in warm clouds, for instance,
we now have a detailed understanding of the role of turbu-
lence in enhancing single-particle sedimentation [8–10] as
well as collision [11–16] and coalescence [17] rates which
control raindrop formation [18,19].
The effect of inertia for anisotropic particles is far more

involved owing to additional rotational degrees of freedom
[20]. Most earlier studies ignore either inertia [21,22] (the
suspendedparticles actingasprobes for the turbulent velocity-
gradient tensor [20,23]) or gravity [24,25]. Experiments have
also largely focussed on neutrally buoyant anisotropic tracers
in turbulence [26–28]. Thus, gravitational settling of heavy
anisotropic particles, beyond simple laminar flows under
Stokesian conditions [29,30], remains largely unexplored
[20]. Recent efforts address the issue of how such particles
sediment in nontrivial flows [31–34], but the effect of gravity

on rotational dynamics is not accounted for, leading to
orientation distributions that are far from being representa-
tive. There exist efforts analyzing the motion of anisotropic
particles in turbulent channel flow, theobject of interest often
being the particle deposition rate ontowalls [35–39].Gravity
is omitted in most of these efforts; those that do include
gravity again neglect its role in the rotational dynamics [40].
In this work, using direct numerical simulations (DNSs) and
theory, we characterize the distribution of particle orienta-
tions in suspensions of spheroids sedimenting in an ambient
homogeneous isotropic turbulent field. Rigorously account-
ing for the effects of gravity on both the particle translational
and rotational degrees of freedom, we find, in contrast to
earlier efforts [31–34], that the orientation distributions
always peak at the broadside-on (to gravity) orientation.
Further, although the particle settling velocities equal the
orientationally averaged estimates in the rapid-settling limit,
they consistently exceed the latter when effects of particle
inertia become significant.
We perform direct numerical simulations of noninteract-

ing spheroids sedimenting through homogeneous isotropic
turbulence with a mass loading assumed small enough for
carrier-fluid turbulence to remain unaffected (a one-way
coupled framework) [41]. The fluid velocity and pressure
fields satisfy the incompressible Navier-Stokes equations for
a fluid with density ρf and kinematic viscosity ν. Turbulence
is maintained in a statistically stationary homogeneous
isotropic state via injection of energy at the lowest wave
numbers (1 ≤ kf ≤ 2) [49]. The simulations are pseu-
dospectral in space and involve a second-order Adams-
Bashforth scheme for time marching. A spatial resolution of
5123 collocation points is used, with the choice of four
different kinematic viscosities corresponding to Taylor-scale
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Reynolds numbers, Rλ ¼ u2rms
ffiffiffiffiffiffiffiffiffiffiffiffi

15=ϵν
p

, of 47, 96, 150, and
200 (urms is the root-mean-square velocity and ϵ ¼ 2νhE∶Ei
is the averaged dissipation rate). For each Rλ, we follow the
motion of 100000 oblate (prolate) spheroids, with aspect
ratios (κ) ranging from 0.1 to 0.01 (10 to 100); here,
κ ¼ a=b, a and b being the semiaxis lengths along and
orthogonal to the spheroid symmetry axis p. The particles are
initialized at random positions with their translational
velocities set equal to fluid values and angular velocities
set equal to those of anisotropic tracers [50] at their locations.
The initial orientations, as characterized by normalized
quaternions [51], are uniformly distributed over the unit
sphere. The simulations are run for 5–6 integral-scale eddy
turnover times, sufficient to attain a statistical steady state.
The equations governing the particle dynamics are

dUp

dt
¼ gþ 1

τpXA
M−1

t · ðu − UpÞ; ð1Þ

dωp

dt
þ I−1p · ½ωp ∧ ðIp · ωpÞ�

¼ KsedI−1p · ½ðMt · ĝÞ · pðMt · ĝÞ ∧ p�

þ 8πμL3I−1p · ½M−1
r ·

�

1

2
Ω − ωp

�

− YHðE · pÞ ∧ p�;

ð2Þ
where Up and ωp are the translational and angular
velocities of the particles, g is the gravitational acceleration
(ĝ being the corresponding unit vector), L is the largest
particle dimension, and τp is the particle relaxation time
(see Ref. [41]). Ip in Eq. (2) is the moment of inertia tensor,
while Mt and Mr denote the Stokesian translational and
rotational mobility tensors for the spheroid, with MtðrÞ ¼
X−1
AðCÞðκÞppþ Y−1

AðCÞðκÞðI − ppÞ, the principal resistance
coefficients (XA–YC) being well-known functions of κ
[52]. The large particle-to-fluid density ratio (ρp=ρf),
relevant to the atmospheric scenario, implies the neglect
of Basset and added mass forces in Eq. (1). The particle
Reynolds numbers based on both the Kolmogorov shear
rate [_γη ¼ ðϵ=νÞ12] and the nominal slip velocity (Us ¼ τpg)
are assumed small (Re_γη ¼ _γηL2=ν, Res ¼ UsL=ν < 1), so
particles are acted on, at leading order, by the sum of the
gravitational force and quasisteady Stokes drag pro-
portional to the slip velocity [53]; see Ref. [41]. Since
sub-Kolmogorov spheroids experience turbulence as a
fluctuating linear flow, the Jeffery relation [50,52] is used
for the turbulent torque in Eq. (2) with the ratio YH=YC¼
ðκ2−1Þ=ðκ2þ1Þ being the Bretherton constant B [54].
Equation (2) includes, in addition, the gravity-induced
torque acting to orient an anisotropic particle, sedimenting
in a quiescent fluid at small but finite Res, broadside-on
to gravity [55–57]; an expression for this torque was
obtained in Ref. [55]. The superposition of the gravity
and shear-induced torques in Eq. (2) has been used [58]

earlier to determine the orientation dynamics of particles
sedimenting through simple shear flow [59,60]. The
quantity TR ¼ ðKsed=μL3 _γηÞ ∼ Fr2ηfIðκÞ characterizes the
relative magnitudes of these torques in Eq. (2), where
Ksed ¼ ResμUsL2fIðκÞX2

A, with the aspect-ratio dependent
function, fIðκÞ, having been obtained in Ref. [55], and
Frη ¼ τpg=uη being the Froude number based on the

Kolmogorov velocity scale (uη¼ðνϵÞ14). In Eq. (1) and
Eq. (2),u,Ω, andE denote the undisturbed turbulent velocity,
vorticity, and rate-of-strain fields interpolated at the particle
positions [41].
Apart from Rλ, κ, and Frη, the dynamics as governed

by Eq. (1) and Eq. (2), on length scales of the order of the
Kolmogorov scale [lη ¼ ðν3=ϵÞ14] or smaller, is a function of
the Kolmogorov Stokes number (Stη ¼ τp=τη with τη ¼
_γ−1η the Kolmogorov time scale). Using parameters char-
acteristic of the atmospheric scenario, including ice crystal
sizes and turbulence dissipation rates from Ref. [34], the
simulations reported here correspond to Stη ∈ ð0.0037; 0.4Þ
and Frη ∈ ð0.5; 17Þ. For a given Rλ, the dynamics of the
thinnest (disklike) spheroids corresponds to the smallest
Stokes and Froude numbers. The torque ratio, TR ranges
from 1–800 for all ice crystal sizes and turbulence
intensities considered here. Thus, the gravity-induced
torque is expected to be dominant for typical ice clouds.
This is borne out in Fig. 1 which shows the distribution of
orientations cos θ0 ¼ jĝ · pj (since p and −p correspond to
the same spheroid orientation,we take themodulus), obtained
from our DNSs for (a) Rλ ¼ 150 and (b) Rλ ¼ 47. For each
Rλ, we show results for oblate spheroids of different aspect
ratios (see legend), both with (Res ¼ 0.8) and without
(Res ¼ 0) the gravity-induced torque. The gravity-induced
torque causes the distributions to be sharply localized about
the broadside-on orientation (cos θ0 ¼ 1), especially for the
smaller Rλ. In contrast, as emphasized in the insets of Fig. 1,
neglect of this torque leads to distributions peaked at the
longside-on orientation (cos θ0 ¼ 0 for oblate spheroids),
although this maximum is quite shallow, consistent with
earlier studies [32–34]. The continuous curves in Fig. 1 are a
guide to the eye; the comparison with a Gaussian in Fig. 1(a)
nevertheless conveys the pronouncedly non-Gaussian char-
acter of the distributions for Res ¼ 0.8.
Analytical progress is possible in the rapid-settling limit

(henceforth, RSTor “rapid-settling theory”), lη=Us ≪ τη or
Frη ≫ 1, when a particle settles through a Kolmogorov
eddy much faster than the eddy decorrelates [61] (see
Ref. [41]). Further, assuming Stη ≪ 1, and neglecting the
angular acceleration in Eq. (2), the rate of change of
spheroid orientation, _p ¼ ωp ∧ p, is given by

_p ¼ −Mr · ½Ksed½ðMt · ĝÞ · pðMt · ĝÞ� ∧ p� ∧ p

þ 1

2
Ω ∧ pþ YH

Yc
½E · p − E∶ ppp�: ð3Þ
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As already seen, the torque ratio TR ∼ fIðκÞFr2η with
fIðκÞ ∼Oð1Þ for oblate spheroids. For large Frη, the weak
turbulent shear only leads to small fluctuations about
the broadside-on orientation. For such orientations, with
ĝ ¼ 13, one has p · ĝ ¼ p3 ≈ 1 and p1;2 ≪ 1. Furthermore,
the rotation rate of the nearly broadside-on spheroid, in any
plane containing ĝ, is asymptotically small since the
gravity-induced torque vanishes for the broadside-on ori-
entation. Thus, there is a near-balance between the 1 and 2
components of the turbulent and gravity-induced torques at
leading order, the terms proportional to _p1;2 in Eq. (3) being
OðFr−2η Þ smaller. This gives

p · ðI − ĝ ĝÞ ≈ 1

Fr2η

8πYAYcτη
fIðκÞXA

�

Sþ YH

Yc
E

�

· p ð4Þ

for the projection of the spheroid axis in the plane trans-
verse to gravity; here S ¼ 1

2
ϵ ·Ω is the vorticity tensor and

ϵ being the Levi-Civita symbol. The components p1;2

transverse to gravity are linear functionals of the turbulent
velocity gradient tensor. Turbulent velocity gradients are
dominated by the smallest (Kolmogorov) scales, and are
pronouncedly non-Gaussian [62]; hence the orientation
distributions, in the rapid-settling limit, are non-Gaussian

(characterized below via the second and fourth moments)
despite the localization about the broadside-on orientation.
Since p3 ¼ cos θ0 ≈ 1 − ðθ20=2Þ for θ0 ≪ 1, h1 − p2

3i ¼
hp2

1 þ p2
2i ≈ hθ20i corresponds to the variance of the ori-

entation distribution about the broadside-on orientation.
With p1;2 linear in E and S, calculating h1 − p2

3i requires
the variance of the turbulent rate of strain and vorticity
tensors over a particle settling trajectory. For Stη ≪ 1;
Frη ≫ 1, one expects no preferential sampling and the
average along a settling trajectory, h� � �i, above may be
replaced by the usual fluid ensemble average [63]. For
homogeneous isotropic turbulence, the ensemble averages
are hEijEkli ¼ ð_γ2η=20Þðδikδjl þ δilδjk − 2

3
δijδklÞ, hSijSkli ¼

ð_γ2η=12Þðδikδjl − δilδjkÞ, and hSijEkli ¼ 0 [64,65]. Using
these [41], one finds

h1 − p2
3i ≈

32π2Y2
AY

2
c

f2I ðκÞX2
A

�

1

3
þ Y2

H

5Y2
c

�

1

Fr4η
: ð5Þ

Figure 2(a) compares the DNS results for h1 − p2
3i to

Eq. (5) and demonstrates the good agreement for large Frη,
with deviations arising for Frη of order unity and smaller, in
which case h1 − p2

3i approaches a plateau.

FIG. 2. Comparison of the orientation moments (a) h1 − ðp · ĝÞ2i and (b) hð1 − p · ĝÞ2i obtained from DNSs with RST predictions
[Eqs. (5) and (6)] in the rapid-settling limit (Frη ≫ 1). The inset in panel (b) is a measure (see text) of the departure from Gaussianity of
the orientation distributions.

FIG. 1. Probability distributions of jp · ĝj for (a) Rλ ¼ 150 and (b) Rλ ¼ 47 in the presence (Res ¼ 0.8) and (inset) absence (Res ¼ 0)
of a gravity-induced torque; different curves correspond to different κ (see legend). The solid black line in (a) denotes a Gaussian with
the same second moment as the distribution for κ ¼ 0.05, Res ¼ 0.8.
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A more sensitive measure of the orientation distributions
is hð1 − p3Þ2i. For a distribution localized about the
broadside-on orientation, hð1 − p3Þ2i ∝ hθ40i, and is there-
fore a measure of the fourth moment. Proceeding along
lines sketched above, hð1 − p3Þ2i ≈ 1

4
hðp2

1 þ p2
2Þ2i with

p1;2 as given above, and the calculation involves the fourth
moment of the turbulent velocity gradient tensor [41]. One
obtains

hð1 − p3Þ2i ≈
1

4

�

8πYAYc

fIðκÞXA

�

4

½M1 þ B2M2 þ B4M3�
1

Fr8η
;

ð6Þ

where M1 ¼ ð3G1=2Þ þ ð32G2=15Þ − ð162G3=15Þ, M2 ¼
−3G1 þ ð8G2=15Þ þ ð54G3=5Þ and M3 ¼ ð3G1=2Þ, with
G1 ¼ hðτη∂u1=∂x1Þ4i, G2 ¼ hðτη∂u1=∂x2Þ4i and G3 ¼
hτ4ηð∂u1=∂x1Þ2ð∂u1=∂x2Þ2i being the independent (non-
dimensional) scalar components involving the fourth
moment of the velocity gradient. Unlike the second
moment, the prefactor multiplying Fr−8η is both a function
of κ and Rλ, the latter dependence arising from dissipation-
range intermittency referred to above. Figure 2(b) compares
Eq. (6) with DNS results, the pattern of agreement being
similar to that of the second moment above [66]. Since
h1 − p2

3i ¼ hθ2oi and hð1 − p3Þ2i ¼ 1
4
hθ4oi for large Frη, the

ratio f½4hð1 − p3Þ2i�=½3h1 − p2
3i2�g, which is independent

of Frη, characterizes the departure from Gaussianity. This
ratio, which is unity for a Gaussian, is plotted as an inset in
Fig. 2(b) for κ → 0 (a flat disk); it is well above unity and
increases with increasing Rλ. One therefore expects ori-
entation distributions in the atmospheric case, with Rλ’s 1
to 2 orders of magnitude higher than those in our
simulations [19], to have similar variances but be signifi-
cantly more intermittent.
In the inset of Fig. 3, we plot orientation distributions as

a function of the spheroid aspect ratio, other physical

parameters being fixed [41]. Interestingly, the localization
about the broadside-on orientation first increases as κ
increases from zero (a flat disk), attains a maximum,
before decreasing again as κ approaches unity. The non-
monotonicity arises because the gravity-induced torque is
small for both flat disks (due to the vanishingly small mass
of such shapes) and near-spheres (since the torque scales
with the square of the small eccentricity). The second
moment from the RST framework, Eq. (5), can be rewritten
to isolate the κ dependence through a change of variable
Frη¼Frη;sph �ðκ=XAÞ, where Frη;sph¼ð2ρpL2g=9μuηÞ. The
resulting κ dependence is consistent with the above non-
monotonicity; although, within the RST framework, h1 −
p2
3i ∼Oðκ−4Þ for κ → 0 and h1 − p2

3i ∼Oðκ − 1Þ−2 for
κ → 1. Since h1 − p2

3i ≤ 1, the divergences above betray a
breakdown of the assumption of a localized distribution in
the analysis. As shown in Fig. 3, the second moments from
our DNS agree with Eq. (5) for intermediate values of κ
(maximum localization of cos θ0), but plateau in the
aforementioned asymptotic limits (corresponding to a
uniform distribution of cos θ0). Overall, the disagreement
with theory, expectedly, grows with increasing Rλ.
With increase in the turbulence intensity, Frη decreases

while Stη increases to values of order unity. As already seen
in Fig. 2, DNS results depart from RST predictions in this
limit. A suspension of spherical particles in a turbulent flow
is no longer spatially homogeneous when Frη; Stη ∼Oð1Þ
[10–12,67]. Preferential sampling of regions of low vor-
ticity by inertial particles, together with a sweeping effect in
presence of gravity, leads to enhanced settling velocities
[8,9,68]. Figure 4 shows this to be true for the suspensions
of spheroids considered here. For large Frη, the time-
averaged settling speeds (which scale linearly with Frη on
account of being proportional to the acceleration due to
gravity) from the DNS agree with the orientational averages
for Rλ ¼ 47 and 96 (the Frη required for this agreement
increases with increasing Stη). For finite Frη and Stη, the
time averages consistently exceed the orientation averaged
estimates due to the preferential sweeping effect [41].

FIG. 4. Comparison between time-averaged and orientation-
averaged settling speeds for Rλ ¼ 47, 96, and 200.

FIG. 3. Orientation distributions for Rλ ¼ 96 for various aspect
ratios, all other parameters staying fixed (see Ref. [41]). The inset
highlights the nonmonotonic behavior of the second moment,
h1 − ðp · ĝÞ2i, scaled with Fr4η;sph, when plotted as a function of κ
for Rλ ¼ 47, 96, and 150.
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In this Letter, we have characterized the orientation
distributions and settling speeds of spheroids in homo-
geneous isotropic turbulence. Orientation distributions are
localized about the broadside-on (to gravity) orientation,
but are pronouncedly non-Gaussian for parameters typical
of the atmospheric scenario. This is in contrast to recent
studies which neglect the gravity-induced torque, and
predict distributions peaked at the longside-on orientation
[31–34]. The non-Gaussian distributions found here are
also in contrast to earlier analyses reliant on a Gaussian
ansatz [69,70]. While the broadside-on peak has been
captured in Ref. [70], the simplistic Gaussian ansatz used
for the velocity field, and the resulting Gaussian nature of
the orientation fluctuations, is incorrect. Furthermore,
Ref. [70] lacks any discussion on the spatial organization
of the particles, and its effect on particle settling speeds. In
contrast, we show that the particle concentration field
remains homogeneous for Stη ≪ 1; for Stη ∼Oð1Þ, pref-
erential sweeping effects lead to a spatially inhomogeneous
concentration and enhanced settling speeds (Fig. 4, [41]).
Results for prolate spheroids (not shown) are similar to
those discussed above. It would be of interest, in the future,
to characterize pair-level statistics for anisotropic particles
in position-orientation space, as a step towards analyzing
ice-water and ice-ice collision efficiencies; the latter
thought of as crucial to explaining observed ice-crystal
concentrations in mixed-phase clouds and relatively rapid
snowflake formation in ice clouds [71–73].
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