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We classify all regular solutions of the Yang-Baxter equation of eight-vertex type. Regular solutions
correspond to spin chains with nearest-neighbor interactions. We find a total of four independent solutions.
Two are related to the usual six- and eight-vertex models that have R matrices of difference form. We find
two new solutions of the Yang-Baxter equation, which are manifestly of nondifference form. These new
solutions contain the S-matrices of the AdS2 and AdS3 integrable models as a special case. This can be used
as a starting point to study and classify integrable deformations of these holographic integrable systems.
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Introduction.—The Yang-Baxter equation is an impor-
tant equation that appears in many different areas of physics
[1–4]. It signals the presence of integrable structures which
manifest themselves in areas ranging from condensed
matter physics to holography. Famous integrable models
such as the Heisenberg spin chain and the Hubbard model
were important for our understanding of low-dimensional
statistical and condensed matter systems. Similarly, over
the last few years, exceptional progress has been made in
understanding the AdS=CFT correspondence due to the
discovery of integrable structures [5].
The solutions of the Yang-Baxter equation are the so-

called R matrices which generate the tower of conserved
charges that define integrable models [6–8]. Alternatively,
they describe two-particle scattering matrices in integrable
field theories [9,10].
Understanding and classifying the solutions of the Yang-

Baxter equation is an important and open question with
multidisciplinary applications. Recently we put forward
a new method [11,12] to classify regular solutions of the
Yang-Baxter equation by using the so-called boost auto-
morphism [13–16]. Regular solutions are those whose
corresponding integrable lattice models have nearest-
neighbor interactions. The main idea behind this method
is to use the Hamiltonian rather than the corresponding R
matrix as a starting point. So far, we applied this method to
solutions of the Yang-Baxter equation that were of differ-
ence form Rðu; vÞ ¼ Rðu − vÞ. In this Letter we extend our
approach to the most general case.
We demonstrate our method by classifying all solutions

of the Yang-Baxter equation of eight-vertex type. We find

four different types of models. Two models are related to
the usual six- and eight-vertex models that have R matrices
of difference form. However, additionally, we find two new
solutions of the Yang-Baxter equation which are manifestly
of nondifference form.
As a further application of our results, we show that the

relevant R matrices that appear in the lower-dimensional
cases of the AdS=CFT correspondence [17–20] are indeed
contained in our solutions. We can then use our results to
classify integrable deformations of these systems within the
aforementioned framework.We show that theRmatrix of the
AdS2 integrable model admits a one-parameter deformation,
while the AdS3 case admits both a two-parameter elliptic
deformation and a family of functional deformations. We
postpone further details to an upcoming publication [21].
Method.—Conserved charges: Consider a general sol-

ution Rðu; vÞ of the Yang-Baxter equation

R12R13R23 ¼ R23R13R12; ð1Þ

where we do not assume that R is of difference form
i.e., Rijðui; ujÞ ≠ Rijðui − ujÞ. Such an R matrix will
generate a transfer matrix corresponding to an integrable
spin chain via

tðu; θÞ ¼ tr0½R0Lðu; θLÞ…R01ðu; θ1Þ�; ð2Þ

where L would be the number of sites and θi are physical
parameters associated with the quantum spaces. We restrict
our discussion to homogeneous spin chains in which the
θi ¼ θ parameters of all physical spaces coincide.
We furthermore restrict our discussion to integrable

models with nearest-neighbor interactions and hence we
assume that R is regular, i.e., Rijðu; uÞ ¼ Pij where Pij is
the permutation operator on sites i and j. Then, the spin
chain Hamiltonian Q2 has interaction range two and is
given by the logarithmic derivative of the transfer matrix
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Q2ðθÞ ¼
X
i

Hi;iþ1ðθÞ; HðθÞ ¼ P
dRðu; θÞ

du

����
u¼θ

: ð3Þ

In the special case when the R matrix is of difference form,
the dependence on the parameter θ drops out.
The other conserved charges of the integrable model are

given by the higher derivatives of the transfer matrix. More
specifically we have

Qrþ1 ∼
dr

dur
log tðu; θÞ

���
u¼θ

: ð4Þ

The interaction range of Qr is r and from (1) it follows that

½Qr;Qs� ¼ 0: ð5Þ

This tower of conserved charges is the defining property
of an integrable system. In this Letter we will construct
all models with certain properties that have a tower of
conserved charges coming from an R matrix.
Boost operator: Instead of taking derivatives of the

transfer matrix, there is an alternative way to compute the
higher conserved charges Qr¼3;4;:…. Namely, the so-called
boost operator B½Q2� satisfies [14–16]

Qrþ1 ∼ ½B½Q2�;Qr�; r > 1: ð6Þ

The boost operator is a differential operator and depends on
the coefficients of the Hamiltonian [15]

B½Q2� ≔ ∂θ þ
X∞
n¼−∞

nHn;nþ1ðθÞ: ð7Þ

This expression is strictly speaking only defined for infinite
length chains, but reduces consistently to spin chains of
finite length.
Integrable Hamiltonians: Now we consider a nearest-

neighbor Hamiltonian with general entries hijðθÞ and
compute the corresponding charge Q3 by using the boost
operator (7). The Hamiltonian potentially corresponds to an
integrable system if

½Q2;Q3� ¼ 0: ð8Þ

This is a necessary condition for integrability and it takes
the form of a set of coupled first order, nonlinear, differ-
ential equations for the components of H.
R matrix: In order to prove integrability we then,

for each potentially integrable Hamiltonian, compute the
corresponding R matrix. Let _R be the derivative with
respect to the first variable, then by expanding the Yang-
Baxter equation around the point u1 ¼ u2 ≡ u to first order
we find

½R13R23;H12ðuÞ� ¼ _R13R23 − R13
_R23: ð9Þ

Similarly with R0 denoting the derivative with respect to
the second variable, expanding the Yang-Baxter equation
around u2 ¼ u3 ≡ v yields

½R13R12;H23ðvÞ� ¼ R13R0
12 − R0

13R12; ð10Þ

with Rij ¼ Rijðu; vÞ. These equations are special cases of
the Sutherland equation [22] and they form a set of coupled
first order differential equations. Since we assume regu-
larity and know the Hamiltonian, we see that we obtain two
boundary conditions which in principle fix our solution
uniquely. Subsequently, we can verify whether the solu-
tions of the Sutherland equations satisfy the Yang-Baxter
equation and formally prove integrability. Notice that this
method is complete in the sense that any solution of the
Yang-Baxter equation necessarily gives an integrable
Hamiltonian.
Identifications.—There are some simple ways in which

different solutions of the Yang-Baxter equation can be
related to each other. In what follows we will identify
models which can be mapped to each other under the
following transformations.
Local basis transformation: If Rðu; vÞ is a solution of the

Yang-Baxter equation, then we can generate a different
regular solution by defining

RðVÞðu;vÞ¼ ½VðuÞ⊗VðvÞ�Rðu;vÞ½VðuÞ⊗VðvÞ�−1: ð11Þ

It gives rise to a new integrable Hamiltonian

HðVÞ ¼ ½V ⊗ V�H½V ⊗ V�−1
− ½ _VV−1 ⊗ 1 − 1 ⊗ _VV−1�; ð12Þ

where everything is evaluated at θ.
Reparametrization: If Rðu; vÞ is a solution, then

R½fðuÞ; fðvÞ� is a solution of the Yang-Baxter equation
as well. This transformation affects the normalization of
the Hamiltonian. We are also free to reparametrize any
other functions and constants in both the R matrix and
Hamiltonian. For instance the R matrices from [23,24] can
be obtained by a reparametrization of the XXX R matrix.
Normalization: If Rðu; vÞ is a solution, then for any

function gðu; vÞ the product gðu; vÞRðu; vÞ is also a
solution. On the level of the Hamiltonian this corresponds
to rescaling and shifting gðθ; θÞHþ g0ðθ; θÞ.
Discrete transformations: For any solution Rðu; vÞ of

the Yang-Baxter equation, PRðu; vÞP, RTðu; vÞ, and
PRTðu; vÞP are solutions as well.
All these transformations are universal and hold for any

integrable model. They have a trivial effect on the spec-
trum, which means that they describe the same physi-
cal model.
Twists: Additionally, there are identifications that are

model dependent. For example, if R is a solution and
assuming ½UðuÞ⊗UðvÞ;R� ¼ ½VðuÞ⊗ VðvÞ;R� ¼ 0, then
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½UðuÞ ⊗ VðvÞ�R½VðuÞ ⊗ UðvÞ�−1 is also a solution. A
twist will generically have a nontrivial effect on the
spectrum of the model.
Results for 4 × 4.—We apply our method to spin chains

with a two-dimensional local Hilbert space. We already
applied our method to such R matrices of difference form
and found that only Hamiltonians of eight-(or less) vertex
type seem to be physical [11]. For this reason we will for
the moment only consider Hamiltonians of this type. We
parametrize our Hamiltonian as

H ¼ h11þ h2ðσz ⊗ 1 − 1 ⊗ σzÞ þ h3σþ ⊗ σ−

þ h4σ− ⊗ σþ þ h5ðσz ⊗ 1þ 1 ⊗ σzÞ
þ h6σz ⊗ σz þ h7σ− ⊗ σ− þ h8σþ ⊗ σþ; ð13Þ

where hi ¼ hiðθÞ and σi are the Pauli matrices with
σ� ¼ 1

2
ðσx � iσyÞ. Let us also introduce the primitive

functions HiðθÞ ¼
R
θ hiðϕÞdϕ.

Similarly we write our R matrix as

R ¼

0
BBB@

r1 0 0 r8
0 r2 r6 0

0 r5 r3 0

r7 0 0 r4

1
CCCA; ð14Þ

where we suppressed the dependence on the spectral
parameters.
After our identifications, we find only four independent

types of 4 × 4 Hamiltonians that solve the integrability
condition (8): (i) 6-vertex A, h6 ≠ 0 and h7 ¼ h8 ¼ 0,
(ii) 6-vertex B, h6 ¼ h7 ¼ h8 ¼ 0, (iii) 8-vertex A, h6 ≠ 0,
h7 ≠ 0, h8 ≠ 0, (iv) 8-vertex B, h6 ¼ 0 and h7 ≠ 0, h8 ≠ 0.
Notice that for Rmatrices of difference form, there are eight
independent solutions [11,25]. This means that some of
these solutions are reductions of the same nondifference R
matrix. For example, all seven-vertex type solutions are
special cases of eight-vertex models. If a Hamiltonian is
equivalent to a well-known one under identifications we
will not list its R matrix.
Let us discuss these models in more detail.
6-vertex A. Setting h7 ¼ h8 ¼ 0 and plugging this

Hamiltonian into (8), we see that it is satisfied if and only
if the functions hiðθÞ satisfy the following differential
equations:

_h3
h3

¼
_h6
h6

þ 4h5;
_h4
h4

¼
_h6
h6

− 4h5; ð15Þ

provided that h6 ≠ 0. This is easily solved to give

h3 ¼ c3h6e4H5 ; h4 ¼ c4h6e−4H5 ; ð16Þ
where c3;4 are constants. The Hamiltonian is equivalent to
that of the XXZ spin chain. In other words, the source of the

nondifference dependence on the spectral parameters is only
due to twists, basis transformations, and reparametrizations.
6-vertex B. It is easy to see that setting h6¼ h7 ¼ h8¼ 0

makes the Hamiltonian satisfy ½Q2;Q3� ¼ 0 for any choice
of h1;…; h5. Thus, the Hamiltonian depends on five free
functions. We can account for four of them by using a
local basis transformation, a twist, a normalization, and a
reparametrization. Since there is one free function left, this
model does not have an R matrix of difference form
underlying it and is a new solution of the Yang-Baxter
equation.
Without loss of generality, we normalize our R matrix

such that r5 ¼ 1. We use a local basis transformation to set
h2 ¼ 0. It follows from the Sutherland equation (9) that
r8 ¼ r7 ¼ 0, r6 ¼ 1 ¼ r1r4 þ r2r3, and

r1 ¼
_r2 þ 2h5r2

h4
; r3 ¼ −

2h5r4 þ _r4
h4

; ð17Þ

while r4 satisfies a Riccati equation

̈r4 −
_h4
h4

_r4 þ r4

�
h3h4 −

2h5 _h4
h4

þ 2ð _h5 − 2h25Þ
�
¼ 0: ð18Þ

Now we introduce a reparametrization of the spectral
parameter

ui ↦ xi ¼ 2

Z
ui h5

_h4
h4
− _h5

h3h4 − 4h25
; ð19Þ

which kills the nonderivative term in the Riccati equation.
It is then straightforward to solve our system of differential
equations to find r2ðx; yÞ ¼ H4ðxÞ −H4ðyÞ and

r1ðx; yÞ ¼ r4ðy; xÞ ¼ 1þ 2
h5ðxÞ
h4ðxÞ

r2ðx; yÞ; ð20Þ

r3ðx; yÞ ¼ 4
h5ðxÞ
h4ðxÞ

h5ðyÞ
h4ðyÞ

r2 − 2

�
h5ðxÞ
h4ðxÞ

−
h5ðyÞ
h4ðyÞ

�
: ð21Þ

This solution is manifestly of nondifference form and it is
easy to show that it satisfies the Yang-Baxter equation and
the correct boundary conditions. Notice also that the form
of the Rmatrix depends on the type of functions hi from the
Hamiltonian. For instance, if hi are constants then R will be
rational.
8-vertex A. In case h6 ≠ 0, the integrability constraint

gives that h3 ¼ h4, h5 ¼ 0 together with the following
equations:

_h3
h3

¼
_h6
h6

;
_h7
h7

¼
_h6
h6

þ 4h2;
_h8
h8

¼
_h6
h6

− 4h2; ð22Þ

which are easily solved by
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h3¼ c3h6; h7¼ c7h6e4H2 ; h8¼ c8h6e−4H2 ; ð23Þ

where ci are constants. The resulting Hamiltonian is that of
the XYZ spin chain under our identifications.
8-vertex B. In the case when h6 ¼ 0, we find that the

most general solution satisfies the differential equations

_h7
h7

¼ 4h2 þ
_h3 þ _h4
h3 þ h4

þ 4
h3 − h4
h3 þ h4

h5 ¼
_h8
h8

þ 8h2; ð24Þ

_h5
h5

¼ −
h23 − h24
4h5

þ
_h3 þ _h4
h3 þ h4

þ 4
h3 − h4
h3 þ h4

h5: ð25Þ

In order to solve these equations we introduce two new
functions that simplify this set of differential equations.
Defining b1, b2 such that

h3 ¼�
ffiffiffiffiffi
b1
b2

s
ð2h5 þ b2Þ; h4 ¼�

ffiffiffiffiffi
b1
b2

s
ð2h5 − b2Þ; ð26Þ

we get a simple equation for b2 that can be solved
to give

b2 ¼
b1

c22e
4B1 þ 1

; B1 ¼
Z

b1: ð27Þ

The solutions to the remaining equations are then

h7 ¼ c7h5e4H2þ2B1 ; h8 ¼ c8h5e−4H2þ2B1 : ð28Þ

We see that there are four free functions remaining and
hence this model is genuinely of nondifference form.
We again normalize our R matrix such that r5 ¼ 1 and

we use a local basis transformation to set h2 ¼ 0. We then
apply a further constant basis transformation and set
h7 ¼ h8 which implies that r7 ¼ r8. Moreover, let us set
the normalization of H such that h8 ¼ k, which corre-
sponds to choosing h5 ¼ ðk=c8Þe−2B1 . We see that r5 ¼ r6
and obtain the following differential equation for r8

_r28 ¼ k2ðr28 þ 1Þ2 − 4r28: ð29Þ

This can only be solved in closed form since k ¼ ðc7=2c2Þ
is constant. The solution is

r8ðu; vÞ ¼ k
snðu − v; k2Þcnðu − v; k2Þ

dnðu − v; k2Þ ; ð30Þ

where sn, cn, dn are the Jacobi elliptic functions with
modulus k2. The remaining entries of R can be expressed in
terms of r8 and after redefining h5ðxÞ ¼ − 1

2
cot ηðxÞ we

find

r1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin ηðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ηðvÞp �

sin ηþ
cn
dn

− cos ηþsn
�
; ð31Þ

r2 ¼
∓1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin ηðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ηðvÞp ½cos η−snþ sin η−

cn
dn

�
; ð32Þ

r3 ¼
∓1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin ηðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ηðvÞp �

cos η−sn − sin η−
cn
dn

�
; ð33Þ

r4 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin ηðuÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin ηðvÞp �

sin ηþ
cn
dn

þ cos ηþsn
�
; ð34Þ

where η� ¼ f½ηðuÞ � ηðvÞ�=2g and all the Jacobi elliptic
functions depend on u − v, i.e., sn ¼ snðu − v; k2Þ. This
solution indeed satisfies the Yang-Baxter equation and
has the correct boundary conditions. Moreover, it is easy to
see that in the case where η is constant, it becomes of
difference form and reduces to the well-known solution
found in [25–27].
The limit c2 → 0 is interesting, and themodels falling into

this category include the AdS2 integrable system. However,
it should be handled with certain care and is equivalent to
take k → ∞. In order to take this limit we should rescale the
spectral parameters ðu; vÞ ↦ ½ðu=kÞ; ðv=kÞ� and make use
of the identities for inversions of the elliptic modulus. We
also need to redefine B1ðu=kÞ → B1ðuÞ. We can then safely
take k → ∞ and find that R becomes of trigonometric type.
Deformations of AdS2;3.—For both the AdS2 and AdS3

integrable models, the R matrix contains separate same
chirality 4 × 4 blocks that need to satisfy the Yang-Baxter
equation by themselves. We demonstrate that these blocks
fit into our classification. From our method, we note
that it is enough to map the AdS2;3 Hamiltonians to the
Hamiltonians that we found, rather than compare R
matrices. The AdS=CFT Hamiltonians depend on the
rapidity through the variables x� defined as

u ¼ 1

2

�
xþ þ 1

xþ
þ x− þ 1

x−

�
;

xþ

x−
¼ eip: ð35Þ

AdS3. For AdS3, we see that the Hamiltonian of
particles with the same chirality [17,18] is of six-vertex
B type. We compute the Hamiltonian and identify the
resulting functions with h1;…; h5. For the spin chain frame
[28], the result is given by h2 ¼ 0 and

h3ðuÞ ¼
_x−

x− − xþ
; h4ðuÞ ¼

_xþ

x− − xþ
; ð36Þ

h1 ¼ −
1

2
ðh3 þ h4Þ; h5 ¼ −

1

2
h1 ð37Þ

and we take the positive sign in the square root in h3, h4.
A similar expression holds for [18] up to factors of eip=2 in
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h3;4 and now h2 ≠ 0. We now see that there are two possible
types of deformations. First, we can match this model with
our six-vertex B type, which leaves us with a continuous
family of deformations since we can add arbitrary func-
tions of the spectral parameter to all of the components.
This might be a reflection of the special nature of two-
dimensional CFTs. Second, we can embed the Hamiltonians
[18,28] in our eight-vertex B model. This gives a one-
parameter elliptic deformation of the AdS3 model. The
embedding is given, for the spin chain frame, by

h1 ¼
1

2

_xþþ _x−

xþ−x−
; b1¼

1

2

_xþ− _x−

xþ−x−
; h5 ¼−

1

2
h1; ð38Þ

together with h2¼c2¼c7¼c8¼0. This is a novel elliptic
deformation. For the string frame, c2 ≠ 0 and h2 ≠ 0 andwe
take the positive sign of the square root in h3;4.
AdS3. The massive sector of the AdS2 × S2 × T6 string

sigma model [19,20] is of eight-vertex B type with the
þ sign in the square root in the Hamiltonian. It has c2 ¼ 0
and furthermore c7 ¼ −c8. The nonzero components of the
Hamiltonian are parametrized as

h1 ¼
1

4

x− þ xþ

x− − xþ

�
_xþ

xþ
þ _x−

x−

�
; ð39Þ

h5 ¼
1

8

1þ e
ip
2

1 − e
ip
2

�
_xþ

xþ
þ _x−

x−

�
; ð40Þ

B1 ¼ −
1

2
log

�
c8e−i

p
2

4

1þ e
ip
2

1 − e
ip
2

�
xþ −

1

x−

��
: ð41Þ

We conclude that this integrable model only admits a one-
parameter deformation by taking c2 to be nonzero.
Conclusions and outlook.—In this Letter we classified all

regular solutions of the Yang-Baxter equation of eight-
vertex type. We find four independent solutions of which
two are new. We were able to relate some AdS=CFT
integrable models to our new models and in this way we
could classify their integrable deformations. The AdS3 R
matrices we found correspond to the case of same chirality,
while the R matrices of opposite chirality are not regular
and can instead be obtained up to some constants by
requiring that they satisfy the Yang-Baxter equation [21]. It
is interesting that we can deform the two matrices with the
same chirality independently. There are many new pressing
open questions and future directions for research.
First, it would be interesting to apply our method to a

wider range of physical systems. In particular the case of a
four-dimensional local Hilbert space is of interest as it
would contain the Hubbard model and generalizations
thereof. In this way deformations of the AdS5 superstring
could also be studied. We plan to address some of these
issues in upcoming work [21].

Second, it would be important to study and understand
the physical and mathematical properties of the new sol-
utions of the Yang-Baxter equation that we derived. For
instance, one obvious direction would be computing the
spectrum of the eight-vertex B model by performing the
Bethe ansatz. Similarly, it would be interesting to find out if
there is a quantumalgebra and associatedYangian symmetry
Y underlying our new solutions. It is also unclear if there are
1þ 1 dimensional integrable field theories whose two-body
scattering matrix corresponds to our new solutions.
Third, it is now important to understand if our deforma-

tions for the holographic integrable models can actually be
realized. In general, finding a spin-chain description of an
integrable holographic system takes several steps and it is
not clear that such a description always exists. After this, it
would in particular be interesting to find the meaning of the
deformation parameters on both the string and CFT side.
Understanding the functional (infinite dimensional) defor-
mation of the AdS3 model should also be very fascinating.
Fourth, our method raises further questions regarding

the general structure of integrable models. So far, imposing
(8) is actually sufficient. This seems to support an old
conjecture for integrability [29]. However, it is unclear
why this is the case and attempts at proving it have
failed. Moreover, we do not impose braiding unitarity,
R12ðu; vÞR21ðv; uÞ ∼ 1, but all our solutions satisfy it
nevertheless.
Lastly, it would be interesting to consider long-range

deformations of our models [30–32]. Such deformations of
spin chains correspond to loop corrections in the AdS=CFT
correspondence.
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