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We analyze the dynamics of entanglement entropy in a generic quantum many-body open system from
the perspective of quantum information and error corrections. We introduce a random unitary circuit model
with intermittent projective measurements, in which the degree of information scrambling by the unitary
and the rate of projective measurements are independently controlled. This model displays two stable
phases, characterized by the volume-law and area-law scaling entanglement entropy in steady states. The
transition between the two phases is understood from the point of view of quantum error correction: the
chaotic unitary evolution protects quantum information from projective measurements that act as errors. A
phase transition occurs when the rate of errors exceeds a threshold that depends on the degree of
information scrambling. We confirm these results using numerical simulations and obtain the phase
diagram of our model. Our work shows that information scrambling plays a crucial role in understanding
the dynamics of entanglement in an open quantum system and relates the entanglement phase transition to
changes in quantum channel capacity.
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A generic unitary evolution of a quantum many-body
system scrambles information. Any local degrees of free-
dom that are initially in an unentangled state become
increasingly more entangled with the rest of the system,
making the information encoded in them effectively unre-
coverable [1–3]. The scrambling dynamics [4–7], evi-
denced by the growth of the entanglement entropy
toward an extensive value [8–11], underlies the rich
complexity of quantum dynamics and the fact that simu-
lating it is beyond the capability of classical computers.
In a realistic system, however, unitary dynamics is often

interspersed by occasional measurements of local observ-
ables made by external observers either controlled or
accidental. This process disentangles the measured degrees
of freedom from the rest of the system, which may reduce
the entanglement entropy. Thus, it is natural to ask under
what conditions the growth of entanglement is tamed to a
point allowing efficient classical simulations of the quan-
tum dynamics [12,13].
This question has been addressed in a number of recent

works. In the special case of noninteracting fermions,
quantum states with volume scaling entanglement (vol-
ume-law phase) are unstable to any small rate of measure-
ments in local occupation basis, leading to steady states in
which the entropy only scales with the boundary area of a
region (area-law phase) [14]. However, the corresponding
behavior in generic interacting systems appears to be much
more subtle and has not been fully understood. On the one
hand, Refs. [15–17] suggested that the interplay between

the unitary dynamics and measurements can lead to a
transition between two distinct phases: for sufficiently
small measurement rates, the system remains stable in
the volume-law phase, while it undergoes a transition into
an area-law phase as the rate exceeds a certain critical
value. On the other hand, in its early version, Ref. [17]
pointed out that this phase transition cannot be explained by
a simple competition between rates of entanglement growth
and measurements, as it would always predict the area-law
phase for nonzero measurement rates.
In this Letter, we show that a central ingredient for

understanding the entanglement phase transition is the
effective quantum error correction enabled by scrambling
unitary dynamics. Using simple concepts from quantum
information theory, we provide new insight on the mecha-
nism that drives the phase transition. Naively, the phase
transition seems to hinge on the competition between the
rate of entanglement generation by unitary gates and that of
disentanglement by measurements. If this perspective is
true, the volume-law phase is unstable against an arbitrarily
small rate of measurements since the competition is
fundamentally not symmetric. Given a bipartition, a local
unitary gate may change the entanglement only when it acts
nontrivially across the boundary of two subsystems. In
contrast, the effect of the measurements could be nonlocal:
by disentangling all of the measured qubits inside a
subsystem, the rate of entanglement reduction may be
extensive. Thus, measurements would always overwhelm
the entanglement generation and destabilize the volume-
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law phase. Here, we argue that this is not the case when
information scrambling is taken into account.
Our key observation is that nonlocal effects of sparse

measurements are greatly suppressed due to the natural
quantum error correction (QEC) property of scrambling
dynamics. If quantum information is sufficiently scrambled
by unitary evolution, correlations between two subsystems
are hidden in highly nonlocal degrees of freedom and
cannot be revealed by any local measurements. In such
case, sparse local measurements, despite their extensive
number, cannot decrease the entanglement entropy signifi-
cantly. To illustrate this point and quantify the condition
under which the entanglement is robustly protected against
local measurements, we improve and apply the quantum
decoupling theorem to a specially constructed toy model
[18,19], showing the stability of the volume-law phase. We
find that the mechanism of the protection is equivalent to
that of the QEC scheme [18–20]. Motivated by this
understanding, we introduce a new model and analyze
its dynamics both analytically and numerically to obtain the
phase diagram. Furthermore, we establish an exact relation
between the steady-state entanglement entropy and the
quantum channel capacity of quantum dynamics.
Protection against measurement.—We now illustrate

how entanglement can be protected against measurements
using a well-studied toy example from quantum informa-
tion theory [19,21–23]. Consider a system of 2N qubits
(N ≫ 1) as shown in Fig. 1. Initially, the two halves of the
system, A and B, share γN Bell pairs (0 < γ < 1), which
control the amount of the entanglement between the two.
The two subsystems are evolved independently with
unitaries UA and UB, respectively. We assume UA is a
random unitary drawn from the Haar distribution (or any
unitary 2-design), and UB can be arbitrary. Following this
evolution, a fraction p of the qubits in A is measured. The
pertinent question is by how much these measurements
reduce the entanglement between A and B. We shall show
that under a certain condition the change of entanglement
entropy due to the measurements vanishes in the thermo-
dynamic limit even though an extensive number of qubits
are being disentangled. Note that this result can be

generalized to incorporate measurements performed on
both A and B by sequentially analyzing the effect of
measurements.
We first simplify the problem. Since UB does not affect

the entanglement, we may replace B with its minimal
effective degrees of freedom B̃ entangled with A, i.e., the
original γN entangled qubits. Also, we divide A into two
parts: subsystem A1 refers to the unmeasured qubits and
subsystem A2 contains the measured ones. We now apply
the decoupling theorem [19,21–23] to this setup, which will
imply that, for a sufficiently small measurement fraction p,
the reduced density matrix of A2 and B̃ approximately
factorizes

EUA
½jjρA2B̃ðUAÞ − ρmax

A2
⊗ ρB̃jj1� ≤ 2−ð1−2p−γÞN=2: ð1Þ

Here, the left-hand side denotes the distance, in the L1

norm, between the exact density matrix ρA2B̃ and a
factorized one where ρmax

A2
is the maximally mixed state

on the measured part A2. EU½·� represents averaging over
the random unitaries. The inequality implies that the
measured qubits are effectively decoupled from B̃ for
N ≫ 1, provided that the number of unmeasured qubits
A1 is more than half of the total system AB̃, or equivalently

γ þ p <
1

2
ð1þ γÞ; ð2Þ

or simply γ < 1–2p. If this inequality is satisfied, then any
observable in A2 contains no information about B̃ and vice
versa. Therefore, measuring one subsystem does not affect
the other, up to an error exponentially small in N. In
particular, any projection (due to measurements) acting on
A2 does not alter ρB̃, and the entanglement entropy of
subsystem B is unchanged. In fact, one can show that even
the initial γN Bell pairs can be reconstructed by local
operations in A1 with an exponentially good precision [20].
The inequality in Eq. (2) is enough to prove the stability

of volume-law scaling of the entanglement entropy in the
presence of extensive number of measurements. However,
it is not tight. This is because in deriving the inequality we
assumed that qubits in A2 are discarded (i.e., qubit loss
errors), whereas in our situation they are projectively
measured, leaving their measurement outcomes as acces-
sible classical information. In [24], we develop an
improved decoupling equality, in which the measurement
outcomes from A2 are treated as accessible information.
This leads to a tight bound

γ < 1 − p ð3Þ

in the limit N → ∞. This inequality can be saturated by
typical Haar random unitaries. An intuitive way to under-
stand this new result is to realize that the measurement
processes of pN qubits involve entangling those qubits

FIG. 1. Quantum state of 2N qubits generated by applying
unitaries UAðBÞ to γN Bell pairs. Measuring p fraction of qubits
(A2) does not reduce the entanglement between A ¼ A1A2 and B
as long as 1 − p > γ in the limit N → ∞.
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with an equal number of auxiliary qubits representing the
environment (or classical measurement devices). These
additional degrees of freedom effectively add to the
right-hand side of Eq. (2), i.e., γ þ p < ð1þ γ þ pÞ=2,
leading to the tight bound.
So far, we have considered an ideal situation where the

Bell pairs are hidden over the entire Hilbert space via a
nonlocal unitary. However, we emphasize that such
information scrambling is a generic property of quantum
dynamics even in local systems [8–11,34]. In such cases,
we expect that the amount of entanglement reduction is
governed by the competition between the rate of
effective information scrambling and that of projective
measurements.
Model and phase diagram.—Having understood the

mechanism to protect the entanglement against measure-
ments through scrambling, we turn to study a local 1D
model in which the rates of effective information scram-
bling and measurements can be tuned independently.
Our model consists of a chain of L blocks, each

containing a fixed number, m ≫ 1, of qubits, as illustrated
in Fig. 2(a). In each time step t, the system is evolved by a
network of random unitaries Udði; tÞ acting on pairs of
neighboring blocks at i and iþ 1, supplemented by
projective measurements. Crucially, the unitaries Udði; tÞ
are constructed from an internal network consisting of d
layers of independent random 2-qubit gates (drawn from
any unitary 2-design). Thus, the parameter d controls the
degree of information scrambling within a single Udði; tÞ,
which becomes maximally scrambling in the limit
d=m ≫ 1. In this limit the distribution of Udði; tÞ
approaches a unitary 2-design over Uð22mÞ [34]. After
applications of the Udði; tÞ on pairs of blocks, a fraction p

of the qubits in each block is randomly chosen to be
measured in the computational basis [35]. We note that the
special case of our model, d ¼ 1, is closely related to the
previously studied ones [15–17].
Before obtaining a quantitative phase diagram from

numerical simulations [Fig. 2(e)], one can already predict
the stability of volume-law phase in the limit m ≫ 1 and
d=m ≫ 1. Consider the unitary evolution Udði; tÞ for a pair
of blocks. If we identify the pair of blocks as subsystem A
and the rest of the system as B, we can use the decoupling
inequality as discussed above. As long as the average
entropy per qubit γ satisfies the criteria in Eq. (3), the
measured qubits contain almost no information about the
rest of the system (up to corrections exponentially small in
m). Here, the entanglement reduction is suppressed by
information scrambling within the blocks. Over multiple
time steps, quantum information becomes scrambled over a
larger region, further protecting the entanglement from
measurements. Thus we expect a stable volume-law phase
in this regime.
We can also make a definitive statement about the other

extreme of small d and high measurement rate. For
example, consider d ¼ 1, m ≫ 1, and p ¼ 1 − 1=m. In
this case there is no room for scrambling; thus, the
probability that a single qubit becomes entangled to other
qubits at distance x away (in units of qubit blocks) is
exponentially suppressed as ∼ð1=mÞmx because the infor-
mation encoded in the qubit needs to propagate without
being projected at least ∼mx time steps. This implies area-
law entanglement [14]. Therefore, we expect a phase
transition between the two extreme cases.
We now complement the theoretical arguments with a

numerical simulation of the half-chain entanglement

(a)

0

0.2

0.4

0.6
(b)

0 10 20 30

-1

-0.5

0
(c)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1(d)

1/11 1/4 1/2 1 2 4
0

0.2

0.4

0.6

0.8

1(e)

Volume-law

Area-law

10-3

10-2

10-1

100

FIG. 2. (a) A model with tunable degrees of information scrambling d and measurements p. An array of m-qubit blocks undergoes
layers of unitary gates (light blue) and random projective measurements (red). Each unitary acting on neighboring blocks comprises
independently random 2-qubit gates (orange). Each measurement projects a randomly chosen p fraction of qubits in each block. (b),(c)
Entanglement dynamics with m ¼ 11, d ¼ 44, and p ¼ 0.4 for two different system sizes L ¼ 32 (blue) and 48 (light green). (b) The
growth of entanglement density as a function of time t. The dash-dotted line indicates the upper bound 1 − p. (c) Change in the
entanglement entropy before and after projective measurements at each time step. (d) Steady-state entanglement entropy per qubit as a
function of p for ðd;mÞ ¼ ð44; 11Þ, (84,21), and (3,11). (e) Phase diagram for m ¼ 11. The color-coded background displays the half-
chain entanglement entropies in steady states, normalized by the number of qubits Lm=2 ¼ 176. Black markers indicate the phase
transition points extracted from finite size scaling analysis up to L ¼ 64. The numerical results in (b)–(e) are averaged over 240 different
realizations of random circuits and measurements.
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entropy SðtÞ starting from the initial state jΨ0i ¼ j0i⊗mL.
We construct the unitary operators Udði; tÞ from random 2-
qubit Clifford gates drawn from a uniform distribution
instead of taking Haar random unitaries. Such Udði; tÞ still
approaches a unitary 2-design as d increases [24]; hence,
this simplification does not affect our predictions,
while allowing scalable numerical simulation [36–39].
Furthermore, the wave function evolved under Clifford
gates always exhibits a flat entanglement spectrum with
respect to any bipartition. Thus, different measures of
entanglement entropy, e.g., von Neumann versus Rényi
entropies, yield the same value. In the following, we focus
on m ¼ 11.
We first consider a strongly scrambling regime,

d=ð2mÞ ≳ 1, where the unitary network within a single
block effectively acts as a random 22m × 22m unitary
[24,34]. We test if the scrambling property of individual
blocks leads to the robust volume-law entanglement of the
entire system. Figures 2(b) and 2(c) show the detailed
dynamics of the entanglement entropy for two different
system sizes. Clearly, the entropy rescaled by the sub-
system size exhibits a strict linear growth until it saturates
to a constant value. The convergence of these values
confirms the volume-law scaling of the entropy [24].
Moreover, we can directly compute how much the entan-
glement entropy changes, ΔSmeasðtÞ, following projective
measurements in each time step. Figure 2(c) confirms our
prediction that in the strongly scrambling regime d=ð2mÞ ≳
1 and m ≫ 1, the entanglement is unchanged by measure-
ments until it reaches a saturation value set by the maximal
entanglement that can be protected by the scrambling
dynamics [40]. Once saturated, the entanglement added
by the unitary gates pushes the entropy above the threshold
of the decoupling theorem and it is reduced back to the
saturation value by the subsequent measurements. Thus,
upon reaching the saturation value, we see a jump ofΔSmeas
from near zero to a negative value. We further note that the
saturation value approaches its maximum, 1 − p, as m is
increased in this regime [Fig. 2(d)]. This is natural since our
tight bound in Eq. (3) becomes exact when m → ∞, and it
predicts that each qubit on average contributes γ ¼ 1 − p to
the global entanglement. We note that this analysis does not
hold in the weakly scrambling regime d=ð2mÞ≲ 1, e.g.,
d ¼ 3, m ¼ 11 [Fig. 2(d)].
We now turn to the phase transition that occurs when d is

decreased or p is increased. From numerical simulations,
we compute the half-chain entanglement per qubit and
tripartite mutual information in the steady state for various
L and p for a fixed d [24]. We perform a finite size scaling
analysis in order to extract the critical measurement fraction
pc as well as the correlation length critical exponent ν
[15,41]. By repeating the analysis for various values of d,
we obtain a two-dimensional phase diagram shown in
Fig. 2(e). We find that the fitted critical exponent ν has a
universal value around 1.2 independent of d and m,

suggesting the universality of the transition [24]. When d ¼
1 the extracted critical value pc ≈ 0.16 is consistent with
previously reported results [16,42]. More importantly, we
find that the volume-law entangled phase extends to a
higher measurement fraction, as d increases to ∼m, and
then saturates for d=ð2mÞ ≳ 1.
Discussion.—The existence of the stable volume-law

phase has a direct interpretation in terms of QEC for
quantum communications [18], where the primary goal is
to devise an encoding scheme to transfer the maximum
amount of quantum information over a noisy or lossy
channel. The maximum amount of coherent quantum
information that can be transmitted through such a channel
is called the quantum channel capacity Q [19,43].
Previously, one of the most important applications of the
decoupling theorem had been to show that, by using a
random unitary encoding, it is possible to asymptotically
transfer 1 − 2p logical qubits per physical qubit over a
lossy channel in which a fraction p of the physical qubits is
lost [19]. In our settings, the projective measurements are
distinguished from qubit loss errors since their measure-
ment outcomes are available as classical information. This
allows achieving a higher quantum channel capacity 1 − p
that we prove using a new decoupling inequality [24].
The connection between the quantum channel capacity

and the volume-law phase can be made more precise in two
different settings. In the specific setting of our 1D model,
we considered the capacity within a pair of neighboring
qubit blocks. Here, the quantum information we wish to
protect is quantified by the entanglement entropy between
the qubit blocks and the rest of the system. The random
unitary circuit is equivalent to repeated encoding of the
information without explicit decoding. Since this encoding
scheme can protect ∼ð1 − pÞ2m logical qubits in each pair
of m-qubit blocks [24], we expect that our system should
exhibit a stable volume-law scaling of entanglement sup-
ported by those logical qubits.
In a more general setting, we consider the entire system

dynamics as a quantum channel and investigate its quantum
channel capacity Q. To this end, we take the input state to
be entangled with an auxiliary reference such that its
reduced density matrix is ρin. Then, we ask how much
entanglement with the reference can be recovered from the
combination of the output system density matrix ρout and a
set of classical measurement outcomes after a long time
evolution. This can be quantified by the coherent infor-
mation IcðN ; ρinÞ [44]. For a quantum channel N con-
sisting of unitary evolution interspersed with measurements
(in any positive-operator valued measures), we show that
[24]

Q ¼ max
ρin

IcðN ; ρinÞ ¼ max
ρin

hSðρoutÞi ð4Þ

where hSðρoutÞi is the von Neumann entropy of ρout,
averaged over all possible measurement outcomes during
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the time evolution. We note that the first equality in Eq. (4)
is not generically valid, but it holds for a class of so-called
degradable quantum channels that include our cases
[19,43,44]. Using the second equality, we establish an
exact connection between quantum channel capacity and
the average entropy of a system undergoing any unitary
evolution interspersed by measurements. A similar con-
nection was first suggested in a recent paper by Gullans and
Huse [41].
In Ref. [41], hSðρoutÞi for the maximally mixed initial

state was shown to undergo a phase transition, which
coincides with the entanglement phase transition for pure
initial states. Specifically, in the volume-law phase,
hSðρoutÞi remains extensive at late time, while in the
area-law phase, it rapidly approaches a value of order
one. This transition was dubbed the purification phase
transition [41]. The equivalence between the purification
and entanglement phase transitions has later been estab-
lished analytically for local Haar random unitary circuits
with measurements [45]. Therefore, Eq. (4) also builds a
quantitative connection between the quantum channel
capacity and the entanglement phase transition. We note
that, in random circuit models studied in
Refs. [15,16,41,45,46], the channel N itself is random,
whose average Ic is maximized for the maximally mixed
input, furthering the connection [24].
We note that, after we conjectured the relation between

the quantum channel capacity and entanglement phase
transition in the earlier preprint version of this paper,
Ref. [41] provided the first quantitative evidence, proving
that the single-shot quantum channel capacity is upper
bounded by the average entropy of the output and showed
that the stabilizer circuit saturates the bound. In this new
version, we further prove a generic equality between output
entropy and quantum channel capacity by considering the
classical information in measurement outcomes as part of
the channel.
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