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Currently, there are intense experimental efforts to realize lattice gauge theories in quantum simulators.
Except for specific models, however, practical quantum simulators can never be fine-tuned to perfect local
gauge invariance. There is thus a strong need for a rigorous understanding of gauge-invariance violation
and how to reliably protect against it. As we show through analytic and numerical evidence, in the presence
of a gauge invariance-breaking term the gauge violation accumulates only perturbatively at short times
before proliferating only at very long times. This proliferation can be suppressed up to infinite times by
energetically penalizing processes that drive the dynamics away from the initial gauge-invariant sector. Our
results provide a theoretical basis that highlights a surprising robustness of gauge-theory quantum
simulators.
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Introduction.—In modern physics, gauge theories
assume a central role, ranging from the standard model
of particle physics [1] to emergent exotic solid-state phases
[2,3]. The defining feature of any gauge theory is its
local conservation laws, such as Gauss’s law for a U(1)
gauge symmetry. Despite their elegance, the computation
of gauge theories on classical computers is a daunting
task [4,5], particularly for out-of-equilibrium phenomena.
Currently, a complementary tool to probe gauge theories is
emerging in the form of low-energy tabletop devices,
so-called quantum simulators [6–9]. Although still in the
developmental phase, these experiments are rapidly
advancing [10–18], making one open issue all the more
pressing: how can we ensure the reliability of quantum
simulators once they scale beyond problems that can be
benchmarked by classical computers [19,20]? For gauge
theories, this issue is particularly subtle, since a faithful
quantum simulation necessitates not only the correct
engineering of the Hamiltonian dynamics but crucially
also of the defining local gauge symmetry. It becomes
thus an outstanding challenge to understand how gauge-
invariant dynamics may be faithfully simulated—without
unrealistically fine-tuned interactions between the constitu-
ents of the quantum simulator and in the consequently
unavoidable presence of gauge-violating errors.

As we show in this Letter, quantum simulators can
reliably reproduce the out-of-equilibrium dynamics of
gauge theories even if the prohibitive restriction of perfect
gauge invariance is relaxed. Our results are based on
numerical studies of Z2 and U(1) gauge theories as well
as analytic proofs. In the presence of gauge invariance-
violating terms, the short-time dynamics deviates only
perturbatively slowly from the idealized scenario, and
observables reproduce the ideal dynamics during a time
frame controlled by the strength of the gauge-violating
errors. Upon adding a protection term that energetically
penalizes such errors, gauge invariance becomes bounded
from above even up to infinite times, cf. Fig. 1. As we
explain below and in the Supplemental Material [21], this
protection can be mathematically understood as an emer-
gent, deformed gauge symmetry [22]. In surprising contrast
to expectations from perturbation theory, our numerics
suggests that the strength of the protection term does not
need to scale with system size.
Our results thus form a theoretical basis for some

previous works, which have found evidence that quantum
simulators may approximately retain gauge invariance
[23–29], and they complement protection schemes based
on classical noise [30]. Moreover, our work complements
existing results on equilibrium theories: gauge-invariant
equilibrium phases can emerge in a low-energy effective
theory, even if the microscopic description breaks gauge
invariance, e.g., in topological phases of matter [31],
when the gauge degree of freedom decouples because of
a large mass [32], or when gauge-noninvariant terms at a
small scale renormalize away at large distances (“light from
chaos”) [33–35].
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Model.—Here, we focus on out-of-equilibrium dynam-
ics, which is highly pertinent for current quantum simu-
lators in ultracold atomic gases [14,16–18] and for which
emergent gauge symmetry has received considerably less
attention. Although our discussion is general, for concrete-
ness, we consider a Z2 gauge theory [36–39] coupled to
matter inspired by a recent experiment [16]—we mostly
consign similar results for a U(1) gauge theory to the
Supplemental Material [21].
The Z2 gauge theory lives on a lattice of Lmatter sites in

one spatial dimension [40], described by the Hamiltonian

H0 ¼
XL
j¼1

½Jaða†jτzj;jþ1ajþ1 þ H:c:Þ − Jfτxj;jþ1�; ð1Þ

with periodic boundary conditions. Here, τfx;zgj;jþ1 are spin-
1=2 Pauli matrices, where the z (x) component stands for
the Z2 gauge (electric) field on the link between matter sites
j and jþ 1. The matter fields are represented by hardcore
bosons with the annihilation operator aj on site j. The
dynamics of the matter field couples to the Z2 gauge field
with strength Ja. The electric field has energy Jf.
Gauge invariance is encoded in a set of local symmetry

generators

Gj ¼ 1 − ð−1Þjτxj−1;jQjτ
x
j;jþ1; ð2Þ

with eigenvalues gj and where Qj ¼ 1–2a†jaj is the charge
of the matter field. As a Z2 lattice equivalent of Gauss’s law,
the Gj commute with the model Hamiltonian ½H0; Gj� ¼ 0,
∀ j. For a perfectly gauge-invariant system, the Hilbert
space thus decouples into different symmetry sectors with
fixed local charge gj ¼ 0, 2.
In the standardmodel of particle physics, such local gauge

invariance is postulated at a fundamental level. In a quantum
simulator, however, gauge invariance needs to be engineered.
Some experiments have used Gauss’s law to integrate out
either matter or gauge fields, which yields an effective spin
theory, suitable for implementation in a quantum computer
andwith encodedgauge invariance [10,11,15].However, this
approach is viable only in one spatial dimension. If, in
contrast, both matter and gauge fields are retained as active
degrees of freedom, such as in recent ultracold-atom experi-
ments [16–18], exact gauge invariance would require fine-
tuning at unrealistic levels of accuracy. Consequently, such
quantum simulators will always have some inherent gauge
invariance-breaking processes.
To study the severity of such terms, we add for

concreteness the error Hamiltonian

λH1 ¼ λ
XL
j¼1

½ðc1a†jτ−j;jþ1ajþ1 þ c2a
†
jτ

þ
j;jþ1ajþ1 þ H:c:Þ

þ a†jajðc3τzj;jþ1 − c4τ
z
j−1;jÞ�: ð3Þ

These terms are inspired by Ref. [16], though our conclu-
sions do not depend on their precise form. Here, λ is a
parameter representing an adjustable gauge-noninvariant
error strength and the constants cl are modeled after
experimental parameters [21]. Generically, the error term
of Eq. (3) will drive the dynamics out of the gauge-invariant
subspace, such that after a certain time the expectation value
of the Gauss-law operator will be the same as in a random
state from the entireHilbert space (i.e., the space that contains
gauge-invariant states as well as all states with Gjjψi ≠ 0).
Quench dynamics with gauge violation.—We mimic a

typical quantum simulator experiment, where the system is
initialized in a simple product state jψ0i in the gauge-
invariant sector Gjjψ0i ¼ 0, ∀ j, which is then quenched
with the Hamiltonian H0 þ λH1. We choose jψ0i such that
ha†jaji¼½1þð−1Þj�=2 and hτxj;jþ1i ¼ ð−1Þjþ1, and, follow-
ing Ref. [16], we set Ja ¼ 1 and Jf ¼ 0.54 (our conclu-
sions do not depend on these precise choices). Our
numerical results are obtained using the QUTIP [41,42]
and QUSPIN [43,44] exact diagonalization toolkits. For time
evolution, we have opted to use our own exact exponenta-
tion routine in lieu of these toolkits’ time-evolution
functions, given the extremely long times we simulate,

FIG. 1. Right: given a gauge theory with Hamiltonian H0 on L
matter sites, undesired processes ∝ λH1 that break gauge sym-
metry drive the dynamics away from the initial gauge-invariant
sector (green bubble) given by the analog of Gauss’s law,
Gjjψi ¼ 0∀ j to other sectors in the total Hilbert space (blue
bubble). At late times, the average gauge violation assumes a
random value. Left: through the introduction of a protection term
∝ VHG that energetically penalizes gauge-violating processes,
gauge invariance is retained up to infinite times. Two sharply
distinct regimes emerge: an uncontrolled-violation regime where
V is too small to energetically isolate the initial gauge-invariant
sector, and a controlled-violation regime for sufficiently large V
where the infinite-time violation scales as ∼ðλ=VÞ2. The axes are
both log scale. See Fig. 4 for a detailed quantitative presentation
on Z2 (p ¼ 1) and U(1) (p ¼ 2) gauge theories.
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for which solvers based on integrating ordinary differential
equations are not optimal.
To evaluate the effect of H1 on the gauge-invariant

dynamics, we consider the dynamics of the spatiotemporal
averages of the violation of Gauss’s law,

εðtÞ ¼ 1

Lt

Z
t

0

ds
XL
j¼1

hψðsÞjGjjψðsÞi; ð4Þ

the magnetization in the x direction (the “electric field”)

mxðtÞ ¼
1

Lt

Z
t

0

dsj
XL
j¼1

hψðsÞjτxj;jþ1jψðsÞij; ð5Þ

as well as the staggered boson number

NstagðtÞ ¼
1

Lt

Z
t

0

dsj
XL
j¼1

ð−1ÞjhψðsÞja†jajjψðsÞij: ð6Þ

In the above, jψðsÞi¼exp½−iðH0þλH1Þs�jψ0i. The respec-
tive deviations from the ideal gauge-invariant case are
denoted by ΔNstagðtÞ and ΔmxðtÞ. Further observables are
discussed in the Supplemental Material [21]. Note that the
gauge violation in Eq. (4) suffices for the Z2 gauge theory,
but would require an even power in Gj or its absolute value
for the U(1) gauge theory [21].
Our numerical results are presented in Fig. 2. The gauge

violation grows only gradually, εðtÞ ∼ ðλtÞ2 at short times,
before it saturates at long times. This subleading increase of
the gauge violation directly stems from the fact that

P
j Gj

is gauge invariant and also commutes with H0, which
necessarily leads to a vanishing first-order contribution in
perturbation theory, cf. the Supplemental Material [21].
In contrast, the short-time scaling behavior can change for
gauge-invariant observables that do not commute with H0,
such as Nstag and mx. Even though Δmx scales as ðλtÞ2 at
short times, as seen in the inset of Fig. 2(b), ΔNstag shown
in the inset of Fig. 2(c) scales instead as λt2, with the latter
emenating from the first-order term in perturbation theory,
cf. the Supplemental Material [21]. Importantly, NstagðtÞ
remains nevertheless close to the gauge-invariant dynamics
up to t ≈ 1=λ. Thus, there is a clear time frame over which
gauge-noninvariant terms do not compromise observable
properties, and by decreasing λ this time frame can be
improved in a controlled manner.
Quench dynamics with energy protection.—Some prom-

ising proposals have suggested to perturbatively generate
the desired gauge-theory Hamiltonian by adding a term
proportional to Gauss’s law, which energetically penalizes
violations of gauge invariance [7,8,24]. A similar term has
been discussed for protecting stored quantum information
[45]. We now systematically address the question of how

such a term restores the ability to quantum simulate gauge-
invariant dynamics.
To analyze this scenario, we introduce a protection term

VHG ¼ V
X
j

Gj; ð7Þ

which energetically penalizes all violations of Gjjψ0i ¼ 0,
with adjustable protection strength V. Note that Eq. (7) is
not sufficient for the U(1) gauge theory, and should rather
be VHG ¼ V

P
j G

2
j [21]. Our quench Hamiltonian is thus

given by H¼H0þλH1þVHG. Consequently, in Eqs. (4),
(5), and (6) we now have jψðsÞi ¼ exp½−iðH0 þ λH1þ
VHGÞs�jψ0i. In Fig. 3, we show the effect of V on εðtÞ,
ΔNstagðtÞ, and ΔmxðtÞ. As can be shown in degenerate
perturbation theory [21], the violation εðtÞ of Gauss’s law is
suppressed by ðλ=VÞ2 at sufficiently large V, cf. the

(a)

(b)

(c)

FIG. 2. Effect of gauge invariance-breaking terms on the
dynamics of a Z2 gauge theory. Spatiotemporal averages of
(a) the gauge-invariance violation in Eq. (4), (b) the electric field
in Eq. (5), and (c) the staggered boson number in Eq. (6), deviate
only gradually from the ideal dynamics, before gauge-noninvar-
iant effects begin to dominate after a timescale of tdev ∝ 1=λ.
Insets: rescaled deviations from ideal dynamics, showing the
perturbative growth with λ. Data for L ¼ 6 matter sites. See the
Supplemental Material [21] for further information.
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Supplemental Material [21]. One might suspect that such
an energy penalty would only suppress gauge-noninvariant
processes at short times before the system eventually
accesses all possible gauge-invariant sectors at long times.
Interestingly, however, once V is on the order of a few λ, a
“controlled-violation” regime is reached, where εðtÞ is
protected for all simulated times (which are many orders
of magnitude larger than what is reachable in current
experiments).
In contrast, for sufficiently large V the deviation ofmxðtÞ

is suppressed only by λ=V, as shown in Fig. 3(b), with the
suppression ceasing at a timescale ∝ V=λ2, cf. the
Supplemental Material [21]. At the same timescale, Nstag

starts deviating from the gauge-invariant case if the values
of V lie in the controlled-violation regime, see Fig. 3(c).
Furthermore, the terms that drive these deviations can be
described as gauge-invariant processes in degenerate per-
turbation theory, and could thus be absorbed into a
renormalized, gauge-invariant H0. See the Supplemental
Material [21] for more details. The existence of these
timescales is a considerable improvement, since outside the
controlled-violation regime deviations from the ideal
gauge-invariant dynamics proliferate already at an earlier
timescale ∝ 1=λ.
Physically, V protects gauge invariance by opening a

large energy gap between the sectorGjjψi ¼ 0, ∀ j, and all
other sectors. Since the bandwidth of each sector increases
with system size, one could expect the necessity to scale V
with L, which would invalidate this protection mechanism
for large-scale quantum simulators. However, our numerics
suggest that this is not the case. We illustrate this in Fig. 4
for the infinite-time per-site violation of Gauss’s law as a
function of λ=V (with fixed λ ¼ 0.05). We see two clear
regimes. The first at small values of V shows an uncon-
trolled violation that heavily depends on how the different

(a)

(b)

(c)

FIG. 3. Dynamics of the spatiotemporal averages of (a) the
gauge-invariance violation in Eq. (4), (b) the electric field in
Eq. (5), and (c) the staggered boson number in Eq. (6) at error
strength λ ¼ 0.05 and at various values of the protection strength
V for L ¼ 6matter sites. We see two clear regimes: at small V the
gauge-noninvariant behavior dominates after a timescale ∝ 1=λ.
When V is sufficiently large (controlled-violation regime), the
gauge-invariance violation in (a) is indefinitely suppressed by
ðλ=VÞ2, while deviations in the electric field in (c) are suppressed
by λ=V up to a timescale ∝ V=λ2. The deviation in the staggered
boson number becomes uncontrolled only at times beyond
t ∝ V=λ2. See the Supplemental Material [21] for corresponding
results at λ ¼ 0.005 and 0.5.

FIG. 4. Infinite-time violation
P

jhGjðt → ∞Þi=L in the Z2

gauge theory (top panel) and
P

jhG2
jðt → ∞Þi=L in the U(1)

gauge theory (bottom panel) as a function of λ=V for λ ¼ 0.05,
computed for several system sizes L. We see two separate
regimes where at large V the violation is controlled and scales
as ðλ=VÞ2, while at small V the violation is uncontrolled. The
dotted lines indicate the largest V at which there is an energy
overlap between the initial gauge-invariant sector, and other
symmetry sectors, which we protect against. In the controlled-
violation regime, the violation is system size-independent. The
vertical dotted lines correspond to the largest value of V (for a
given system size L) at which the initial gauge-invariant sector
still has spectral overlap with other sectors.
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gauge-invariant sectors are coupled to one another. The
second regime, however, displays a controlled violation
that scales as ðλ=VÞ2. This regime is expected once the
gauge-invariant sector we start in is energetically well
separated from other sectors, as can be shown in degenerate
perturbation theory and made mathematically rigorous by
adapting the results of Ref. [22] (see the Supplemental
Material [21]). For any unitary symmetry that is broken on
a scale ∼λ, the opening of a gap generates an emergent
symmetry that is perturbatively in ðλ=VÞ2 close to the
original one. Surprisingly, however, the scaling as ðλ=VÞ2
sets in much before full separation between sectors is
achieved. This onset appears to be largely independent of
system size, contrary to the analytic arguments based on
perturbation theory and the emergent gauge symmetry (see
the Supplemental Material [21]). The reason is that the
relevant gap to gauge-violating sectors is not to be counted
relative to the entire gauge-invariant sector, but only to the
energy region that is populated during the quench. A
similar effect has been observed for the robustness of
the ground-state degeneracy in topological matter [31].
Our results in Figs. 3 and 4 illustrate how once the

controlled-violation regime is reached at a sufficiently large
V, extrapolations to the ideal case become possible in both
the gauge-invariance violation and gauge-invariant observ-
ables. Indeed, Fig. 3 shows a clear timescale before which
deviations in a gauge-invariant observable are well-deter-
mined as a function of λ and V. Even better, in this regime
the control in the gauge-invariance violation is not limited
by any timescale, but rather persists indefinitely ∝ ðλ=VÞ2.
Conclusions and outlook.—We have carried out a

thorough analysis, through exact diagonalization and per-
turbation theory, of the reliability of lattice gauge theories
in out-of-equilibrium dynamics. We have found that small
gauge-nonivariant processes (of strength λ) do not com-
promise the desired dynamics of observables up to a clear
time frame ∼λ−1. Moreover, when introducing a suffi-
ciently expensive energy penalty of strength V for such
processes, the gauge-invariance violation enters a con-
trolled-violation regime where it scales as ðλ=VÞ2, up to
infinite times, and is also robust with respect to system size.
The suppression in observables’ deviations from their

gauge-invariant dynamics presents a more varied picture.
This is to be expected because when a gauge theory is
broken by a small parameter, another gauge theory pertur-
batively close to it emerges [22] that, even though gauge-
invariant, is still different from its initial counterpart. The
original theory’s exact dynamics can, however, be recov-
ered by an appropriate absorption of the new terms into
renormalized parameters [33,34].
In state-of-the-art quantum simulators based on ultracold

atoms and trapped ions, gauge-invariance breakings as low
as λ ¼ Oð0.5JaÞ [16] and in specific cases protection
strengths as large as V ¼ Oð3 − 28λÞ [18,24] can already
be reached. These are very encouraging results for

experimental efforts as they indicate that introducing an
energy penalty leads to an indefinite protection of gauge
invariance, with energy scales that are achievable in current
setups. Even more, once the protected regime is reached, a
well-defined extrapolation becomes possible from gauge
invariance-violating data to a perfect gauge theory.
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