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We report low temperature electron spin resonance experimental and theoretical studies of an archetype
S ¼ 1=2 strong-rung spin ladder material ðC5H12NÞ2CuBr4. Unexpected dynamics is detected deep in the
Tomonaga-Luttinger spin liquid regime.Close to the pointwhere the system is half-magnetized (and believed
to be equivalent to a gapless easy plane chain in zero field) we observed orientation-dependent spin gap
and anomalous g-factor values. Field theoretical analysis demonstrates that the observed low-energy
excitation modes in magnetized ðC5H12NÞ2CuBr4 are solitonic excitations caused by Dzyaloshinskii-
Moriya interaction presence.
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Understanding quantum many-body systems has always
been a challenge. However, some exact solutions can be
found for 1D systems [1]. There is a rich variety of low-
dimensional magnets that could be approached in terms of
Tomonaga-Luttinger spin liquid [2–4]. One of the simplest
and well-described models for demonstrating the presence
of Tomonaga-Luttinger spin liquid state (TLSL) is a two-
leg spin ladder [5–7]. Such a system has a gap in energy
spectrum below the first critical field and is expected to
have gapless spectrum in TLSL phase above the first
critical field Bc1 up to the saturation field Bc2 [8,9].
Moreover, mapping of the strong-rung spin ladder onto
the exactly soluble XXZ spin chain can be realized in region
between Bc1 and Bc2 [10–13].
In the real systems anisotropic spin interactions are

always present. They typically lead to significant low
energy spectrum changes [14–18]. Incorporating effects
of such perturbations in TLSL description is one of the
challenges in the research on 1D magnetic systems.
However, not so many experimental methods allow to
study the anisotropy induced effects in detail. Electron spin
resonance spectroscopy (ESR) is perfectly suitable for this
goal as it routinely allows energy resolution ∼0.005 meV
at q ¼ 0.
In this Letter we report experimental and theoretical

ESR studies for an archetype strong rung spin ladder model
material ðC5H12NÞ2CuBr4 (called BPCB) [6,12,19,20].
At low temperatures around the field corresponding to
half-saturation of BPCB (i.e., deep in the TLSL regime)
we found a gapped spectrum with unusual frequency-
field dependencies. The conventional Heisenberg spin
Hamiltonian of BPCB does not capture this behavior, as
it predicts a complete softening of q ¼ 0 excitations near

the half-saturation field. Field theoretical analysis shows that
the symmetry allowed pattern of Dzyaloshinskii-Moriya
interaction (which can be accompanied by symmetric aniso-
tropic exchange interactions) results in formation of low
energy solitons in the spectrum of BPCB. The predicted
field dependencies match the experimental results well and
the gap variation with the field direction fixes the orientation
of Dzyaloshinskii-Moriya vectors.
The material BPCB, crystallizing in a P21=c monoclinic

space group [21], represents an almost ideal S ¼ 1=2 strong
rung spin ladder model. The Cu2þ magnetic ions form a
“rung” S ¼ 1=2 dimer pairs with coupling J⊥ ≃ 12.7 K.
Each dimer hosts an inversion center in the middle. The
dimers are in turn coupled into ladders by the interaction
Jk ≃ 3.54 K (Fig. 1). In zero magnetic field this results in a
quantum disordered singlet ground state with the gapped
“triplon” S ¼ 1 magnetic excitations, the gap value being

FIG. 1. Schematic representation of BPCB crystal structure.
I and II mark two types of ladders,D1,D2: DM vectors directions,
dashed line marks the N direction as described in the text.
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ΔZF ≃ 9.2 K. Between the gap closing field Bc1 ¼ 6.6 T
and the saturation field Bc2 ¼ 13.6 T [11,20] the antifer-
romagnetic order exists below T ≃ 0.1 K. Above this
threshold temperature it is replaced by a strongly correlated
TLSL state, persisting up to 1.5 K [22]. Importantly, BPCB
has two types of identical ladders oriented differently. They
are equivalent for the field direction Bkb, and are most
inequivalent for BkðbcÞ at 45° from the b axis [23,24].
This special orientation is denoted BkN. Low symmetry of
BPCB also allows anisotropic Dzyalloshinskii-Moriya
(DM) interaction on the ladder legs. The DM vector D
is uniform along the leg, is directed oppositely on two legs
of the same ladder and is related by reflection symmetry in
the adjacent ladders. No further constrains for its direction
are present.
The multifrequency ESR spectra have been recorded in

the Kapitza Institute in a custom-made spectrometer
equipped with 3He cryostat and 14 T cryomanget. The m ≈
100 mg deuterated BPCB crystal (from the same batch as
in Refs. [23,25]) was placed in the cylindric microwave
resonant cavity and the field dependent transmission
spectra were recorded at the cavity eigenfrequencies.
Two principal magnetic field directions, Bkb and BkN
were used. The data were collected well above the ordered
state: from T ¼ 0.45 to 20 K in a wide field range.
At T > 10 K we observed normal paramagnetic reso-

nance with the g-factor values 2.18 for Bkb, 2.04 and 2.29
for BkN, which are close to the previously reported
values [21,24]. On cooling below T ≃ ΔZF this signal loses
intensity and splits, as expected for ESR of thermally
activated triplet excitations [15,24,26,27].
Besides this triplon-related low field absorption, we

have detected a novel signal between two critical fields
Bc1 ¼ 6.6 T and Bc2 ¼ 13.6 T at 450 mK (see Fig. 2). This
signal exists in a broad frequency range and looses intensity
on heating (see Fig. 3). Therefore we can state that the

observed modes are solely low-temperature phenomenon
and they are connected with presence of TLSL phase in
BPCB. We highlight that the temperature of our experiment
is well above the ordering temperature. This allows to
neglect interladder coupling in further analysis.
Experimentally determined frequency-field diagrams are

shown in Fig. 4. They were fitted by equation:

2πℏν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ½ðgeffμBðB − B�Þ�2

q
; ð1Þ

fit parameters are shown in Fig. 4. The gap Δ=ð2πℏÞ
depends on magnetic field orientation varying from 14 to
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FIG. 2. ESR absorption spectra at T ¼ 450 mK at different
microwave frequencies. Left panel: magnetic field orientation
Bkb. Right panel: magnetic field orientation BkN. A1, A2, C1,
C2, C3, C4 mark different ESR absorption components for both
orientations.
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FIG. 3. Temperature dependence of ESR absorption signal for
ν ¼ 31.8 GHz, sample orientation corresponds to Bkb. Inset:
resonance field temperature dependence for both ESR absorption
components, circles—left component, squares—right compo-
nent. Vertical bars show full ESR linewidths at halfheight for
both components.
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FIG. 4. Frequency-field dependencies for both studied orienta-
tions BkN and Bkb at T ¼ 450 mK. Symbols—experimental
data, solid curves—fit by Eq. (1), dashed lines—isotropic model
with experimentally measured g factors. A1, A2, C1, C2, C3, and
C4 mark different ESR absorption components for both orienta-
tions. The errorbars are within the symbol size.
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22 GHz for the orientations studied. Effective g-factor
values vary from 3.2 to 3.7 for different field directions and
are strongly renormalized compared to the bare values
quoted above.
The presence of the anisotropic gap and the renormal-

ization of effective g factor are not captured by a simple
Heisenberg Hamiltonian:

Ĥ ¼
X
j

J⊥Ŝj;1Ŝj;2 þ JkðŜj;1Ŝjþ1;1 þ Ŝj;2Ŝjþ1;2Þ

− gμBBðŜj;1 þ Ŝj;2Þ; ð2Þ

with index j runs along the ladder sites, and second index
enumerates the ladder legs.
For J⊥ ≫ Jk, all the low energy properties of ladder (2)

at B > Bc1 will essentially be defined by the two lowest
energy states of the dimer on the rung of the ladder. This
validates a “ladder-to-chain” mapping (see Ref. [12] and
references therein):

Ŝx;y1 ¼−
T̂x;yffiffiffi
2

p ; Ŝx;y2 ¼ T̂x;yffiffiffi
2

p ; Ŝz1 ¼ Ŝz2 ¼
1þ 2T̂z

4
: ð3Þ

Here, T̂α are the pseudospin operators that commute just
like the normal spin operators. Assuming that z is the field
direction, the transformed Hamiltonian becomes the one of
an easy plane pseudospin-1=2 chain:

ĤXXZ ¼
X
j

Jk

�
T̂x
j T̂

x
jþ1 þ T̂y

j T̂
y
jþ1 þ

1

2
T̂z
jT̂

z
jþ1

�

− gμB

�
B −

J⊥ þ Jk=2
gμB

�
T̂z
j ð4Þ

At a special magnetic field value gμBB� ¼ J⊥ þ Jk=2 the
system becomes equivalent to a nonmagnetized easy plane
chain. Thus, theoretical model [12,13] predicts softening of
q ¼ 0 excitations at B� ¼ ðBc1 þ Bc2Þ=2. Away from this
point excitations spectrum should follow 2πℏν¼gμBjB−B�j.
Our observations are clearly inconsistent with this

idealized Heisenberg model. This urges us to consider
the effect of peculiar type of Dzyaloshinskii-Moriya
interaction (uniform along the leg, opposite on different
legs) present in BPCB:

Ĥ0 ¼
X
j

D½Ŝj;1 × Ŝjþ1;1� − D½Ŝj;2 × Ŝjþ1;2�: ð5Þ

The Dzyaloshiniskii-Moriya vector D ¼ ðDx; 0; DzÞ may
have both longitudinal and transverse components with
respect to the external field. Under the transformation (3)
the longitudinal part vanishes, and the transformed DM
Hamiltonian becomes:

Ĥ0
XXZ ¼ Dxffiffiffi

2
p

X
j

ðT̂y
j T̂

z
iþ1 − T̂z

jT̂
y
jþ1Þ: ð6Þ

This means that our effective model is now the one of a spin
chain with uniform DM interaction. Heisenberg spin chains
with this type of interaction are known to demonstrate
gapped ESR spectra at zero magnetic field [17,28,29]. This
would, in principle, explain the observed nonvanishing gap
at field B�. The present case, however, is strongly non-
Heisenberg in terms of pseudospin and the effective DM
interaction is perpendicular to the field direction z.
According to Kaplan-Shekhtman-Entin-Wohlman-

Aharony (KSEA mechanism) [30,31], the possible Dx
term should also be accompanied by a weak symmetric
anisotropy term on the same bond:

Ĥ00 ¼ δx
X
j

Ŝxj;1Ŝ
x
jþ1;1 þ Ŝxj;2Ŝ

x
jþ1;2:

This is another possible source of nonvanishing gap at
the “compensation field” B�. After the transformation it
becomes:

Ĥ00
XXZ ¼ δx

X
j

T̂x
j T̂

x
jþ1: ð7Þ

Actually, both Ĥ0
XXZ and Ĥ

00
XXZ yield effectively the same

relevant interaction responsible for the generation of the
gap [7]. We have checked that δz component of KSEA
generated byDz does not contribute to the gap since it does
not break the U(1) symmetry around the field direction z.
The effective spin chain Hamiltonian [(4), (6), (7)] can be
bosonized using the standard methods [1,7,12]. This yields
the effective low-energy field theory near B ≈ B� in the
form of sine-Gordon-type Hamiltonian,

Ĥeff ¼
v
2π

Z
dx

�
K

�∂ϕ
∂x

�
2

þ 1

K

�∂θ
∂x

�
2
�

þ λ

Z
dx cosð2θÞ: ð8Þ

ϕ and θ are bosonic fields and are noncommutative with
each other. K represents the strength of interactions and is
called the Luttinger parameter [1]. The coupling constant λ
is proportional to ðDx=JkÞ2 for the following reason. The
DM interaction (6) directly yields a complex interaction,
cos θ sinð2ϕÞ. This interaction itself is negligible in the low-
energy Hamiltonian, but it generates the excitation gap
indirectly by yielding the relevant interaction cosð2θÞ
through a second-order perturbative process to the TLSL
[7]. This indirect generation of cosð2θÞ can be regarded
as the effective generation of the symmetric exchange
anisotropy (7) [32] by the DM interaction (6).
The cosine interaction potential cosð2θÞ pins the θ field

to one of its minima in the ground state. The pinning is
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accompanied by a spontaneous breaking of the translation
symmetry T̂j → T̂jþ1. One of the ground states has a
transverse staggered magnetization hPjð−1ÞjT̂x

ji > 0

and the other has hPjð−1ÞjT̂x
ji < 0. Once the system

chooses one of the doubly degenerate ground states
spontaneously, its effective field theory (8) is reduced to
be that of quantum spin chains in a transverse staggered
field [7,16,33–35].
Magnetic excitations generated by ϕ and θ fields were

closely investigated in the context of ESR [33,35].
Applying those ESR theories to BPCB, we conclude that
our ESR measurements captured a single soliton (or an
antisoliton) excitations at low temperatures. The soliton and
the antisoltion are topological excitations that cause a
tunneling of θ from one minimum of the cosine potential
to another one [36]. In a magnetic field B ≈ B�, the
pseudospin is bosonized as

T̂þ
j ¼ e−iθ

�
ð−1ÞjB� þ b1 cos

�
2ϕþ 2KgμBðB−B�Þ x

vℏ

��
;

ð9Þ

where B� and b1 are nonuniversal constants [1,18]. The θ
field is pinned to a constant and an operator exp½2iϕðxÞ�
generates a soliton at a position x. ESR thus detects a delta-
function-like peak at a frequency [37]:

2πℏν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ½2KgμBðB − B�Þ�2

q
; ð10Þ

which corresponds to an excitation of a soliton [38,39] with
the mass M, equal to the observed gap Δ, at an incom-
mensurate wave number q ¼ 2KgμBðB − B�Þ=ðℏvÞ along
the chain.
The effective g factor thus turns out to be

geff ¼ 2Kg: ð11Þ

Within the pseudospin approximation (4) the Luttinger
parameter K ¼ 3=4 at B ¼ B� [1,40]. The theoretical
prediction (11) is consistent with the observed anomalously
large g factor including its field-orientation dependence.
Taking into account higher orders of Jk=J⊥ expansion [12]
one obtains for BPCB K ¼ 0.8 (see details in [7]), which
yields g-factor values close to the experimentally observed
one (see Table I).
Unfortunately, it remains challenging to give a micro-

scopic explanation to the field-orientation dependence of
the soliton gap. This is because no microscopic information
is available yet about the nonuniversal proportionality
coefficient between the coupling constant λ and squares
of DM vectors in general field orientations [7]. Still, one
can ascertain that at BkN the soliton gap is decreasing as
jB − B�j increases. This field dependence explains the

reason why we observe the gapped soliton mode in ESR
only in the small field range around B ¼ B�.
We note that breather modes, which are bound states of

the soliton and the antisoliton, are formed but invisible in
ESR experiment because of a mismatch of wave numbers.
The breather modes are developed near the wave number
q ¼ π whereas ESR sees excitations at q ≈ 0. A staggered
DM interaction is requisite for rendering breathers observ-
able in ESR [33,35] but it is forbidden in BPCB by the
symmetry.
We also can estimate possible DM vector orientation

from soliton gap values. From the bosonization theory, we
know that Δ ∝ ðD⊥Þ½4K=ð4K−1Þ�, where K is the Luttinger
parameter and D⊥ is DM magnitude transverse to the
magnetic field. DM vector directions in inequivalent
ladders are linked by crystal symmetry. By taking ratios
of ESR gaps and assuming K ¼ 0.8 as follows from the
TLSL model we obtained DM vector directions (see
Fig. 1). Found projections of DM vectors on ðbcÞ plane
are practically the same as in Ref. [24], but our analysis
predicts that DM vector component parallel to the ladder
has approximately the same length as the component
transverse to the ladder. Procedure of estimation is
described in details in the Supplemental Material [7].
We also put special emphasis on the coexistence of the

gapless TLSL behavior and the gapped soliton mode. This
coexistence originates from differences of two types of spin
ladders. The spin ladder has the finite soliton gap in a field
range B� − δB ≤ B ≤ B� þ δB, where δB corresponds to
the soliton gap at heff ¼ 0 through δB ¼ M=ðgeffμBÞ [7].
We estimate from our experimental data that the first ladder
has the soliton gap for 9.32 T ≤ B ≤ 10.2 T and the second
ladder has the gap for 10.1 T ≤ B ≤ 10.7 T. When the first
ladder has the gap, the second ladder remains gapless in
the TLSL phase, and vice versa. Both spin ladders are
gapped simultaneously, if they could, in an invisibly narrow
field range.
To summarize, this Letter illustrates how crucial the

presence of anisotropy could be in the system as it leads to
symmetry breaking and ground state changes. Gapped
behavior of frequency-field dependencies indicates pres-
ence of massive modes at q ¼ 0 in region where massless
modes were expected. The DM vector that breaks the U(1)
spin-rotation symmetry is responsible for the gapped mode.
Our analysis with the DM vector is not only consistent with

TABLE I. Comparison of experimentally measured g factors
with the predictions of TLSL model.

Experiment TLSL theory
g (T > 10 K) geff (T ¼ 0.45 K) [Eq. (11)]

Bkb 2.18� 0.01 3.32� 0.05 3.49
BkN 2.29� 0.02 3.67� 0.07 3.66
BkN 2.04� 0.02 3.40� 0.05 3.26
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a previous ESR theory of BPCB [32] but also provides
more realistic microscopic model of BPCB. This untypical
and unexpected behavior of energy spectra bridges theory
and experiment and provides one more example of quanti-
tative test of the TLSL model, leading to the deeper
understanding of low-dimensional systems physics.
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