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Turbulent flow restricted to two dimensions can spontaneously develop order on large scales, defying
entropy expectations and in sharp contrast with turbulence in three dimensions where nonlinear turbulent
processes act to destroy large-scale order. In this work we report the observation of unusual turbulent
behavior in steady-state flow of superfluid 4He—a liquid with vanishing viscosity and discrete vorticity—in
a nearly two-dimensional channel. Surprisingly, for a range of experimental parameters, turbulence is
observed to exist in two bistable states. This bistability can be well explained by the appearance of large-
scale regions of flow of opposite vorticity.
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Chaotic motion of flowing fluids—turbulence—is one of
the most ubiquitous phenomena occurring in nature and is
frequently encountered in everyday life. Typically, the
turbulence that one encounters takes place in three dimen-
sions (3D); however, two-dimensional (2D) turbulence,
while not perfectly realized in nature, is relevant to systems
where motion in two dimensions dominates over the third,
such as large-scale flows in oceans [1], atmospheres [2],
soap bubbles [3], or liquid crystal films [4]. The hallmark
feature of turbulence in three dimensions is the transfer of
energy from large scales to small scales in both classical [5]
and quantum [6] fluids. This “Kolmogorov cascade” can be
understood as the splitting of large eddies in the flow into
progressively smaller ones, until viscous damping domi-
nates and dissipates the kinetic energy of small scales into
heat. Turbulence in 3D therefore acts to destroy any large-
scale ordering and, indeed, homogeneous and isotropic
turbulence is an excellent approximation in many cases.
Restricting the flow of a classical fluid to 2D disrupts this

homogenizing behavior. Interestingly, the direction of the
cascade of energy can be inversed [7,8] and vorticity can
coalesce into large eddies, thus spontaneously generating
large-scale order from forcing on smaller scales. If the
vorticity of the system is discrete (e.g., the quantized
vortices in Bose-Einstein condensates [9,10] or the super-
fluid phases of 3He and 4He [11], as opposed to continuous
vorticity of classical fluids), one can treat the system as a
“gas” of pointlike vortices, which can be analyzed using the
tools of statistical mechanics. In his pioneering work,
Onsager [12] showed that such a gas can exist at effectively
negative temperatures, which would physically manifest as
clusters of like-signed vortices (i.e., configurations with
high energy and low entropy), similar to the large-scale
eddies in 2D classical fluids.
Sixty years after its prediction, the Onsager vortex gas

has recently been observed, first using quantized vortices in
Bose-Einstein condensates (BECs) [9,10] and then using a

nanometer-thick film of superfluid 4He [11]. These sys-
tems, however, contained only a small number of vortices
(N < 50) and were allowed to decay freely during the
experiment. Therefore, open questions remain as to the
robustness of this phenomenon in macroscopic systems
with large number of vortices and in steady-state flows
(regimes approached so far only in simulations [13,14]). In
this work, we study a forced and strongly turbulent
oscillatory flow in a micrometer-thick slab of superfluid
4He with macroscopic (millimeter-scale) lateral size.
Turbulence in this system can exist in two nearly degen-
erate bistable states, both different from the laminar (i.e.,
nonturbulent) state. The transitions between these individ-
ual flow states are discontinuous, hysteretic, and a highly
unusual “backward” transition from a less-turbulent to
more-turbulent state upon decrease in velocity is observed.
We argue that these observations stem from quasi-2D
physics and that both the bistability and backward tran-
sition are naturally explained in terms of spontaneous flow
polarization, suggesting the presence of large-scale order.
We study turbulence in superfluid 4He (He II), which

behaves as a mixture of two distinct fluid components [15]
—an inviscid superfluid, where vorticity is restricted to
discrete quantized vortices, and a normal fluid, with
continuous vorticity and finite viscosity. He II has proven
to be a valuable test bed [16–19] for the study of turbulence
with both continuous and discrete vorticity, as well as the
interactions between them.
Here, oscillatory flow is excited inside a microfluidic

Helmholtz resonator [20–22] immersed in He II, where
flow is limited to nearly two dimensions by confinement in
the vertical direction [D ¼ 1067 nm, Fig. 1(a)]. A uniform
confinement, while somewhat larger than the thickness of
previously used adsorbed films [11], avoids dissipative
effects stemming from vortex-surface interactions [23].
Because of this strong confinement, only the superfluid
component of He II can move (the normal component being
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viscously clamped [21]). The resonator is microfabricated
from single-crystal quartz and consists of a central circular
basin connected to a surrounding bath of He II through
two equal opposing channels of rectangular cross section
[Fig. 1(a)]. The capacitive driving and sensing of the flow
(see Refs. [20–22,24] for more details) allows us to
measure the relationship between the driving pressure
gradient and the fluid velocity in the channel of the
resonator. The confinement used in this study was
1067 nm, but qualitatively similar results were also
obtained for 805 nm confinement (see Ref. [24]).
A simulation of the fluid Helmholtz mechanical mode,

Fig. 1(b), shows that the flow velocity is essentially confined
to the two side channels. As the fluid flows into or out of the
channel, the sharp corners at the channel end induce a
vorticity in the flow, as seen in Figs. 1(c) and 1(d). On the
forward stroke [fluid flowing into the channel, Fig. 1(c)]
vorticity is injected into the channel in a polarized fashion.
On the reverse stroke [Fig. 1(d)] vorticity is ejected and lost
into the basin. The two side channels are identical; thus
any flow instabilities are likely to occur approximately
simultaneously.
To study the dissipation in this quasi-2D flow we

resonantly drive the Helmholtz mechanical mode and
continuously increase or decrease the drive amplitude
(no significant dependence on ramp rate was observed).
Several repeated measurements of peak velocity as a
function of peak applied pressure at nominally identical
conditions are shown in Figs. 2(a) and 2(b). For small

drives the behavior is linear (i.e., the flow is laminar). With
increasing drive, however, the measured velocity falls short
of the value expected by extrapolating from the linear
regime. That is, above a critical velocity the flow is damped
by a drag with nonlinear dependence on velocity. The
damping in the linear regime is believed to be dominated by
the thermoviscous effect [21], whereas the nonlinear
damping is predominantly due to the presence of quantized
vortices [37]. The transition to the nonlinear regime is
hysteretic and is marked by a discontinuous jump in the
velocity-pressure dependence. For temperatures below
1.7 K, the velocity-pressure dependence in the nonlinear
regime randomly follows one of two distinct and well-
defined curves; i.e., the turbulence is bistable.
The temperature dependence of the observed critical

velocities [defined as the mean positions of the discon-
tinuous jumps; see Fig. 2(b)] is shown in Fig. 2(c). Here, a
new critical velocity—type “II”—appears below 1.7 K,
which coincides with the beginning of the bistable regime.
In this bistable regime, as the flow velocity decreases, the
intermediate turbulent state with lower dissipation (i.e.,
higher velocity at a given drive) destabilises, but rather than
becoming laminar again, the flow transitions into the state

(a)

(b)

(c)

(d)

FIG. 1. Polarized vorticity in a 2D Helmholtz resonator.
(a) Sketch of the device. The central circular basin, which is
only used to drive and sense the flow, is connected to the
surrounding bath of He II through two side channels. (b) Simu-
lation of the Helmholtz mechanical mode, showing the normal-
ized root-mean-square velocity concentrated in the channels. (c),
(d) Vorticity is induced by sharp corners during the forward and
reverse stroke of the mechanical mode; arrow indicates the
superfluid flow direction. The positive and negative vortices
are well separated in space [cf. the vortex generation terms g� in
Eqs. (1) and (2)] and the injection of vorticity into the channel is
thus strongly polarized [cf. the vortex polarization generation
term gs in Eq. (4)].

(a) (b)

(c)

FIG. 2. Bistable turbulence and critical velocities. (a) The
measured flow velocity as a function of applied pressure gradient
for a range of temperatures. Darker curves show increasing
pressure gradient, lighter decreasing (as indicated by the curved
arrows). (b) Detail of the laminar-to-turbulent transition at 1.4 K.
Blue curves correspond to increasing drive, orange to decreasing
drive. Three critical velocities with discontinuous jumps are
apparent: I, transition from laminar to turbulent state upon
increasing velocity; II, the unusual backward transition into a
more dissipative state upon decrease in velocity; III, transition
from turbulent state back to laminar flow. Above I, the flow can
randomly transition into the more dissipative state (not shown;
see Ref. [24]). (c) The temperature dependence of the critical
velocities of the three types labeled in (b). Onset of the bistable
turbulence coincides with the appearance of the critical velocity II
of the backward transition.
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with stronger turbulence (i.e., lower velocity at a given
drive), as can be seen in Fig. 2(b). This results in a highly
unusual “backward” transition [critical velocity II in
Fig. 2(b)] into a state with higher dissipation as the flow
velocity decreases.
The microscopic confinement and large aspect ratio of

our flow suggests the use of a 2D theory such as the
Onsager vortex gas model [7,12]. However, our system
deviates from the Onsager model in several important
aspects: it is dissipative, continuously driven, and the
confinement is large compared to the thickness of a
quantized vortex (≈10−10 m). Since our measurements
have been conducted at relatively high temperatures,
mutual friction will strongly attenuate any highly curved
vortex structures. Therefore, for the sake of simplicity of
the modeling, we assume that the majority of the vortices in
our system can be described by two populations with
definite orientations; i.e., the vortices are approximately
pointlike (see Ref. [24] for more detailed analysis). We
note, however, that a population of vortices without definite
polarization (i.e., loops attached to a single wall) almost
certainly exists in our system. In quasi-2D modeling these
can be approximated as point-vortex dipoles. Furthermore,
our experiment is sensitive to the total dissipation, which is
an integral quantity, and hence we cannot directly deter-
mine the presence of, e.g., negative vortex temperatures, for
which we would need to know the positions and signs of
the vortices [38,39]. However, the spatial separation of
vortices of differing signs explains the observed bistability,
hysteresis, and backward transition.
To show this, we construct a model for the number of

vortices in the system that captures the essential physics. A
similar approach has been adapted for 2D BECs [40,41]
and 3D counterflow of He II [42]. We model the time
evolution (on timescales long comparable to the flow
oscillation period) of positively and negatively oriented
local vortex densities, nþ and n−, respectively, as

∂nþ
∂t ¼ anþ þ bn− − nþn−dþ gþ; ð1Þ

∂n−
∂t ¼ an− þ bnþ − nþn−dþ g−: ð2Þ

Here, the terms on the right-hand-side correspond to
removal of vortices by advection (a < 0), creation of
new vortices by splitting of seed vortices (b > 0), annihi-
lation of a pair of vortices of opposite orientation (d > 0),
and creation of vortices by large-scale shear (g� > 0). We
note in passing that these equations are similar to the Lotka-
Volterra, or predator-prey, equations used to model pop-
ulation dynamics in ecology [43], oscillatory chemical
reactions [44], or, indeed, the transition to turbulence [45].
Restricting the model to total vortex density n ¼ nþ þ n−
and polarization s ¼ ðnþ − n−Þ=n, we have

∂n
∂t ¼ ðaþ bÞn −

1

2
dn2ð1 − s2Þ þ g; ð3Þ

∂s
∂t ¼ −2bsþ 1

2
dnsð1 − s2Þ þ gs

n
; ð4Þ

where g ¼ gþ þ g− and gs ¼ ½ð1 − sÞgþ − ð1þ sÞg−�,
which we take as our control parameters and assume their
independence of s and n (see Ref. [24] for details). The
term gs represents the polarization of the drive, i.e., the
separation of generation of positive and negative vortices
on the opposing corners of the channel (see Fig. 1). The
vortex densities n� and vortex generation terms g� are
local, whereas only the total drag, determined by the total
number of vortices n, is measured in the experiment. As a
first approximation we can replace the density n by its
spatial average. The polarization s is antisymmetric with
respect to the device axis (see Fig. 1) and its average
vanishes, assuming that the flow remains neutral. Therefore
we decompose sðrÞ into a series of appropriate orthogonal
modes sðrÞ ¼ P

k skðrÞ. Truncating the expansion after the
leading term, we use Eq. (4) for calculating the evolution of

(a) (b)

(c) (d)

FIG. 3. Bistability of the quasi-2D model, Eqs. (3) and (4), for
an example set of parameters a ¼ −1, b ¼ 0.5, d ¼ 3, g ¼ 2, and
gs ¼ 0.1. (a) Starting from initial conditions indicated by the
filled circles, the solution to Eqs. (3) and (4) approaches
(indicated by the color of the trajectory) one of the stationary
points shown as the blue stars. (b) Illustration of the two turbulent
states. The large-scale polarization of the flow is either aligned
(s > 0) or antialigned (s < 0) with the polarization of the drive
[cf. Fig. 1(c)]. (c),(d) The backward transition in n (c) and s
(d) during linear (in time) ramp-down of the generation param-
eters g and gs in the range 100 < t < 500. The flow is
preferentially driven into the s > 0 state. For sufficiently large
number of vortices n, however, s < 0 is also stable (i.e., the flow
state can absorb oppositely oriented vortices without collapsing).
As the drive—and thus the vortex number—decreases, the s < 0
state becomes unstable and the flow switches to the s > 0 state.
The drive and flow are now aligned; thus the vortex number
increases.
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a single mode which captures the large-scale polarization of
the vortex distribution.
The dynamical system of Eqs. (3) and (4) indeed has two

stationary solutions for certain choices of parameters that
differ in both s and n, as shown in Fig. 3(a). The essential
reason for the existence of two distinct steady states of
vortex number n is that gs ≠ 0 [i.e., the drive is polarized;
see Figs. 1(c) and 3(b)], which lifts the degeneracy of s > 0
and s < 0 stationary solutions, when they exist.
By starting the evolution of the system from either of the

stationary solutions and switching off the generation terms
g; gs linearly in time, we model the velocity ramp-down
experiment. The result, shown in Figs. 3(c) and 3(d),
reproduces the unusual backward transition observed
experimentally. The transition occurs due to destabilization
of the s < 0 polarization state, which is stabilized only at
sufficiently high vortex densities n (i.e., the flow state is
robust enough to withstand the oppositely polarized drive).
As the drive, and the overall vortex number, decreases, this
state destabilizes and transitions into the s > 0 state. When
the flow and drive polarizations are aligned, fewer vortices
are annihilated and thus the vortex density n temporarily
increases.
Finally, the temperature dependence of the experimental

observations can be connected, for example, with the
parameter d, which is related to the cross section for
reconnection of colliding vortices. This will increase with
vortex deformation which, in turn, is expected to increase
with decreasing temperature [46]. As shown in Fig. 4, the
bistability does indeed appear as d increases, in qualitative
agreement with the data.
In conclusion, using a microfluidic Helmholtz resonator

we have demonstrated a long-lived bistable turbulent
behavior in superfluid 4He restricted to quasi-2D channel,
which exists below a certain critical temperature. In
addition, we observe an unusual backward transition where

the flow transitions into a more dissipative state as the flow
velocity decreases. The bistability, hysteresis, and the
backward transition of the observed turbulence are under-
stood in terms of a model of vortex density as an interplay
between spontaneous flow ordering and polarization of
turbulence generation. The proposed model is, in principle,
applicable to other systems with discrete vorticity (e.g.,
BECs, superfluid 3He) if the generation of turbulence is in
some manner polarized. An interesting question is whether
similar behavior is possible in continuous classical systems
(indeed, random switching between two degenerate flow
configurations has been observed [47]). The backward
transition is of particular interest, as one usually expects
turbulent fluctuations to decrease as the flow driving them
is reduced. Considering that the driving mechanisms of, for
example, atmospheric or oceanic flows—which are approx-
imately 2D on large scales [2]—are typically not homo-
geneous and isotropic, the bistable behavior could have
implications for weather prediction, climate modeling, and
atmospheres of gas giants [48].
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