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For rare events, path probabilities often concentrate close to a predictable path, called instanton. First
developed in statistical physics and field theory, instantons are action minimizers in a path integral
representation. For chaotic deterministic systems, where no such action is known, shall we expect path
probabilities to concentrate close to an instanton? We address this question for the dynamics of the
terrestrial bodies of the Solar System. It is known that the destabilization of the inner Solar System might
occur with a low probability, within a few hundred million years, or billion years, through a resonance
between the motions of Mercury and Jupiter perihelia. In a simple deterministic model of Mercury
dynamics, we show that the first exit time of such a resonance can be computed. We predict the related
instanton and demonstrate that path probabilities actually concentrate close to this instanton, for events
which occur within a few hundred million years. We discuss the possible implications for the actual Solar
System.
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Rare events can be very important if their large impact
compensate for their low probability. From a dynamical
perspective, when conditioned on the occurrence of a rare
event, path probabilities often concentrate close to a
predictable path, called instanton. This is a key and
fascinating property for the dynamics of rare events and
of their impact [1], which was first observed in statistical
physics, for the nucleation of a classical supersaturated
vapor [2]. Soon after, a similar concentration of path
probabilities has been studied in gauge field theories
[3,4], for instance for the Yang-Mill theory. Instantons
continue to have a number of applications in modern
statistical physics, for instance to describe excitation chains
at the glass transition [5], reaction paths in chemistry [6],
escape of Brownian particles in soft matter [7], MHD [8]
and turbulence [9–13], among many other examples.
Moreover, a large effort has been pursued to develop
dedicated numerical approaches to compute instantons
[14]. Inspired by the earlier works, action minimization
has found a rigorous mathematical treatment through the
Freidlin-Wentzell large deviation theory [15] of ordinary
differential equations with small noises [16].
In all those classical or quantum applications, instantons

appear as action minimizers, for a saddle point evaluation
of a path integral. The basic property of the instanton
phenomenology is that, conditioned on the occurrence of a
rare event, path probabilities concentrate close to a pre-
dictable path. Figure 1 gives an illustration of this property
for a particle in a bistable potential. Shall we expect this
phenomenology to be valid for systems for which the
Freidlin-Wentzell action [17] does not exist in the first
place, for instance chaotic deterministic systems? The main

aim of this Letter is to open this fascinating question for a
paradigmatic problem in the history of physics: the dynam-
ics of the Solar System. Shall we expect an instanton
phenomenology for rare events that shaped or will shape
the Solar System history?
The discovery that our solar system is chaotic with a

Lyapunov time of about five million years [18–20] has
disproved the previous belief that planetary motion would
be predictable with any desired degree of precision. On the
contrary, chaotic motion sets an horizon of predictability of
a few tens of millions of years for the solar system. Even
more striking has been the discovery that about 1% of the
trajectories in the Solar System lead to collisions between
planets, or between planets and the Sun within five billion

FIG. 1. Instanton for a Brownian particle in a bistable potential.
The particle’s trajectory from one attractor to another (white line)
closely follows the minimum action path (instanton, red line), up
to thermal fluctuations. The level curves of the potential are
displayed in the background, with the color scale giving the
potential’s height (courtesy Eric Vanden-Eijnden).
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years [21]. As shown numerically, chaotic disintegration of
the inner solar system (i.e., the four terrestrial planets)
always happens through a resonance between the motion of
Mercury’s and Jupiter’s perihelia [21–24], related to a large
increase in Mercury’s eccentricity. Stochastic perturbation
to planetary motion exists, for instance through the chaotic
motion of the asteroid belt, but is too weak to be responsible
for the rare destabilizations of the inner solar system
[23,25]. Instead, stochasticity in the solar system appears
because of the development of internal deterministic
chaos [23].
Does an instanton phenomenology exist for the rare

destabilization of the Solar System? Our first result will be
obtained within a simplified model of Mercury’s dynamics
[26]. We predict for this model the probability distribution
of the first destabilization time, the instanton paths, and
check the instanton phenomenology.
The secular dynamics describes the planetary motion

averaged over fast orbital motion. The secular dynamics
Hamiltonian is

HðI;ΦÞ ¼ HintðIÞ þ
X

k∈Z16

AkðIÞ cos ðk:ΦÞ; ð1Þ

where ðI;ΦÞ is the canonical set of Poincaré action-angle
variables for the eight planets, k is a vector of integers, and
the coefficients Ak are functions of the action variables only
(see, e.g., [27] for the explicit expression ofH to forth order
in planetary eccentricities and inclinations). We will study
Mercury’s possible destabilization in the framework of
a simplified model proposed by Batygin et al. [26]. This
model should be seen as a minimal model retaining the
relevant interactions leading to destabilization of the inner
Solar System but is not expected to describe quantitatively
the inner Solar System.
The approximations of [26] consist in keeping only the

degreesof freedomof amasslessMercury in theHamiltonian
(1), and replace all other action-angle variables by their
quasiperiodic approximation. Assuming moreover that only
a small number of periodic terms in Eq. (1) significantly
affect the long-term secular motion of Mercury [22,24,
26,28], Mercury’s simplified Hamiltonian is

H ¼ HintðI; JÞ þ E2

ffiffi
I

p
cosðφÞ þ S2

ffiffiffi
J

p
cosðψÞ

þ ET

ffiffi
I

p
cos ½φþ ðg2 − g5Þtþ β�; ð2Þ

where φ and ψ are the canonical angles conjugated to I ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
and J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ð1 − cos iÞ, respectively, and

e and i areMercury’s eccentricity and inclination [26]. g5, g2,
and s2 are frequencies involved in the quasiperiodic decom-
position of the motion of Jupiter (g5) and Venus (g2 and s2).
The numerical values for the other coefficients in Eq. (2) are
given in [29].
A slow variable for Mercury’s dynamics.—We first show

how a slow variable can be built from the dynamics defined

by the Hamiltonian (2). In Eq. (2),Hint only depends on the
actions. Would the total Hamiltonian be reduced to this
part, the actions would be constant and the canonical angles
would simply grow linearly with time according to
Hamilton’s equations

_φðtÞ ¼ ∂Hint

∂I ¼ −g1ðI; JÞ þ g5;

_ψðtÞ ¼ ∂Hint

∂J ¼ −s1ðI; JÞ þ s2: ð3Þ

The fundamental frequencies g1ðI; JÞ and s1ðI; JÞ describe
Mercury’s perihelion precession at frequency g1, and its
orbital plane oscillations with respect to the invariant
reference plane, at frequency s1. For the model (2), g1
value is about 5.700=yr, corresponding to a period of about
227000 years [32].
Through the chaotic dynamics of (2), the fundamental

frequencies fg1; s1g change over time. Mercury’s secular
motion might enter into resonance with the external
periodic forcing if g1 or s1 comes close to one of the
frequencies g5, g2, or s2. In particular, the Mercury-Jupiter
perihelion resonance, between g1 and g5, might trigger
Mercury’s destabilization [21–24]. The three curves of
equations g1ðI; JÞ ¼ g5, s1ðI; JÞ ¼ s2, and g1ðI; JÞ ¼ g2
can be represented in the ðI; JÞ plane, together with the
current values of Mercury’s action variables. We obtain in
Fig. 2 the so-called resonance map that is now widely used
for weakly nonintegrable systems [33,34]. We write (2) as
H ¼ H̃ þHpert, with

H̃ ¼ Hint þ E2

ffiffi
I

p
cosðφÞ þ S2

ffiffiffi
J

p
cosðψÞ; ð4Þ

Hpert ¼ ET

ffiffi
I

p
cos ½φþ ðg2 − g5Þtþ β�: ð5Þ

The term Hpert given by (5) creates a weak perturbation for
Mercury’s long-term evolution. To find the order of
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FIG. 2. Level curves of HintðI; JÞ in action space. The surface
defined by HintðI; JÞ has the structure of a saddle. Mercury
currently satisfies Hint > Hcr and is located in the bounded
domain. For destabilization to occur, Mercury has to cross the
saddle and enter the unbounded domain.
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magnitude at whichHpert affects the long-term dynamics of
Mercury, we employ Lie transform methods [34] with the
software TRIP [35].
There exists new action-angle variables and a canonical

transformation such that Mercury’s Hamiltonian can be put
in the form

H0 ¼ H̃0ðI0; J0;φ0;ψ 0Þ þH0
pert½I0; J0;φ0;ψ 0; ðg2 − g5Þt�; ð6Þ

where the order of magnitude of H0
pert is much smaller than

Hpert. The Lie transform creates periodic terms in H0
pert that

contain new combinations of the angles φ0;ψ 0, and
ðg2 − g5Þt (given in the Supplemental Material [29]).
The difference between Hpert and H0

pert is that the angular
terms of the latter are resonant, which means that their
frequencies can vanish. The existence of such resonant
terms, even of small amplitude, generate long-term chaotic
motion.
The Hamiltonian (6) defines a dynamical system with

two well-separated timescales. On a timescale of the order
of ð1=g1Þ, the action-angle variables evolve according to
Hamilton’s equations of motion. The flow is chaotic with a
Lyapunov time τL of the order of one million years [26]. H̃0
evolution

_̃H0 ¼ fH0
pert; H̃

0g; ð7Þ

sets a new timescale. In Eq. (7), the notation fg represents
the canonical Poisson brackets. Equation (7) shows that H̃0
is a slow variable, because its time evolution is driven by
H0

pert ≪ Hpert. As will become clear in the following, H̃0

remains almost constant on the fast timescale, and has only
significant variations on a timescale of a few hundred
million years.
Diffusion of the slow variable.—The theory of white

noise limit for slow-fast dynamical systems (see, e.g., [36])
suggests that on a timescale much larger than τL, Eq. (7) is
equivalent to a diffusion process. This limit is valid
assuming that the variations of H̃0 on the timescale τL
are sufficiently small. Two additional phenomenological
approximations can be made: first, numerical simulations
performed with Eq. (7) show that the drift is very small
compared to the diffusion coefficient, and can be neglected.
Second, the range of H̃0 values before destabilization is
small, and the diffusion coefficient can be considered as
constant. The long-term evolution of H̃0 can thus be
modeled by the standard Brownian motion

_̃H0 ¼
ffiffiffiffi
D

p
ξðtÞ; ð8Þ

where ξðtÞ is the Gaussian white noise with correlation
function hξðtÞξðt0Þi ¼ δðt − t0Þ. Unfortunately, the exact
expression for D involves the full correlation function of
the Hamiltonian flow defined by H̃0. It is too intricate to be

useful in practice. Starting from the formal expression, it is
shown in the Supplemental Material [29] that an order of
magnitude is

D ≈ 2jHpertj6τL=jH̃j4; ð9Þ

where jH̃j and jHpertj are orders of magnitude of (5) and (4),
respectively. Equation (9) is our first important result.
Evaluating Eq. (9) gives D ≈ 7.2 × 10−7 Myr−3. The asso-
ciated diffusion timescale for H̃0 is evaluated to one billion
years. Those results justifies the self-consistency of the
choice for the slow variable.
Distribution of the first destabilization times of

Mercury.—We now discuss qualitatively the implications
of the existence of a slow variable for Mercury’s destabi-
lization. This discussion is best understood looking at the
level curves ofHintðI; JÞ in action space displayed in Fig. 2.
It can be seen that the landscape defined by HintðI; JÞ has
the topology of a saddle. The saddle is exactly located at the
intersection between the two resonances g1 − g5 and
s1 − s2, with the value Hint ¼ Hcr. The domain of equation
HintðI; JÞ ≥ Hcr has two disjoint components, one bounded
(bottom left) and the other unbounded (top right), only
connected by the saddle point ðIcr; JcrÞ. The initial orbital
parameters of Mercury e and i are located in the bounded
domain, which implies that the short-time orbital fluctua-
tions are restricted to this part of phase space. When Hint
reaches the value Hcr, Mercury can cross the saddle and
enter the unbounded domain of phase space. This latter
event defines Mercury’s destabilization.
We explain in the Supplemental Material [29] how the

above simple criterion translates into an equivalent criterion
for H̃0: there exists a threshold hcr for which the first
destabilization time exactly corresponds to the first hitting
time of H̃0 to hcr.
The full expression of H̃0 is an intricate series composed

of a large number of periodic terms of small amplitude,
which explicit expression is difficult to handle. Following
[26], we prefer to use in practice the local time average
hðtÞ ¼ hH̃i½t−θ;tþθ� as an approximation of H̃0, which is
much simpler to implement numerically. The time frame θ
has to be much larger than the frequency of the fast
variations of H̃ given by the frequency g2 − g5 according
to Eq. (5). As an example, the time variations of H̃ðtÞ
compared to those of hðtÞ is displayed in Fig. 3 with
θ ¼ 2 Myr. We then identify the diffusion Eq. (8) for H̃0

and that for h.
Tracking numerically the value of hðtÞ of trajectories

leading to destabilization confirms that the distribution hðτÞ
(where τ is the destabilization time) is peaked at the value
hcr ¼ −0.048, which can thus be identified as the destabi-
lization threshold. We must also add a reflective boundary
for a upper value hsup, accounting for the fact that the
chaotic region of phase space before destabilization is
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bounded. Destabilization of Mercury occurs when the
Brownian motion defined by hðtÞ reaches hcr. For a
standard Brownian motion, the distribution ρðτÞ of first
hitting times of the value hcr can be derived exactly
(see [29]). The latter is displayed in Fig. 4, together with
the distribution obtained from direct numerical simulations
of Hamilton’s equations.D is the only fitting parameter and
can be estimated as D ≈ 9.6 × 10−7 Myr−3. Using this
value, Fig. 4 shows that the diffusive model Eq. (8) gives a
excellent qualitative agreement with the direct numerical
simulations. The fitted value ofD is also in agreement with
Eq. (9) and its order of magnitude D ≈ 7.2 × 10−7 Myr−3.
Instanton paths for Mercury.—We now focus on the

probability that Mercury’s orbit is destabilized in short
times τL ≪ τ ≪ τ�, where τ� is the maximum of ρðτÞ. The
probability PðτÞ ¼ R

τ
0 ρthðτ0Þdτ0 that the destabilization of

Mercury’s orbit occurs in a time shorter than τ is dominated
at short times by the exponential term ρðτÞ ≍

τ→0
e−ðτ̄=τÞ,

where τ̄ ¼ f½ðh0 − hcrÞ2�=4Dg ≈ 1.56 × 109 years.
The exponential growth is the signature that short-term

destabilizations of Mercury are rare events. The slow
variable hðtÞ, conditioned on the fact that destabilization
occurs at a given time τ, is predictable by the instanton path.
The dynamics of hðtÞ is simple enough such that the

instanton path can be computed exactly: it is the straight
path starting at hð0Þ and reaching hcr at time τ. We can even
obtain a more precise result, namely the exact expressions
for the average and the variance of all trajectories desta-
bilized in a given time τ. The theoretical and numerical
results for τ ¼ 445 million years is displayed in Fig. 5. The
middle blue curve displays the averaged trajectory obtained
through direct numerical averaging of all trajectories
leading to destabilization at time τ. In addition, the upper
and lower blue curves display the variance of the trajecto-
ries ensemble, and show how the trajectories depart from
the most probable trajectory. We have superimposed three
red curves that represent the average and variance of the
probability distribution P½h; tjðhcr; τÞ; ðh0; 0Þ� to observe
the value h at time t, with the constrain hðτÞ ¼ hcr, for the
standard Brownian motion hðtÞ.
The agreement between the diffusive model of h and

Mercury’s dynamics can be considered as excellent, not-
withstanding the small discrepancy at short times coming
from the finite correlation time of Mercury’s secular
dynamics. This is a second confirmation that the diffusive
model for the slow variable is consistent both for the
prediction of Mercury’s first destabilization time distribu-
tion, and for the prediction of instantons. However, we note
that the simple picture of a straight-line instanton is bound
to the validity of the diffusive limit used to derive Eq. (8).
The simple approach described in this Letter would fail if,
for example, the averaged dynamics of H̃0 would not be
negligible.
Within the Batygin-Morbidelli-Holman dynamics, a

reduced model of the inner Solar System with deterministic
chaos, we have shown that the first exit time for a Mercury-
Jupiter resonance can be computed from an effective
stochastic diffusion. We have gone beyond this result,
and we predicted the related instanton and demonstrated
that path probabilities actually concentrate close to this
instanton, for events which occur within a few hundred
million years. For the Batygin-Morbidelli-Holman model,
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FIG. 4. Probability distribution ofMercury’s first destabilization
time. The distribution of Mercury’s first destabilization time is
computed with a direct numerical simulation (blue curve) andwith
the theoretical prediction of the diffusivemodel Eq. (8) (red curve).

0 100 200 300 400 500
-0.05

-0.045

-0.04

-0.035

-0.03

FIG. 5. Prediction of the trajectory leading to Mercury’s short-
termdestabilization. The blue curves display the average trajectory
and the variance of the trajectories leading to a destabilization at
τ ¼ 445 million years, obtained with direct numerical simula-
tions. The red curves display the same quantities obtained with
the theory of rare events (prediction of the instanton, see [29]).
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FIG. 3. A trajectory H̃ðtÞ (cyan) compared to its local time
average hðtÞ (blue). The local time averaging of H̃ðtÞ suppresses
the fast oscillations that do not correspond to long-term varia-
tions. For the long-term chaotic dynamics, hðtÞ is an slow
variable that follows a standard Brownian motion.
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both the instanton and the variance of the trajectories
leading to Mercury’s destabilization can be computed
exactly. While the model contains some of the features
of the inner Solar System dynamics, it neglects others.
Clearly, this model should not be expected to quantitatively
predict first exit times for the actual Solar System.
Nevertheless, the instanton phenomenology is robust to
more complex dynamics. Even if the secular dynamics of
the real Mercury cannot be reduced to a simple diffusion
model as done in this Letter, our striking results suggest that
the destabilization of the Solar System might indeed occur
though an instanton phenomenology. Our work opens this
question: it should be addressed within other models,
which have to be realistic enough for describing faithfully
the actual dynamical mechanisms, but simple enough for a
proper statistical study.
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