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A new upper bound for the quantum capacity of the d-dimensional depolarizing channels is presented.
Our derivation makes use of a flagged extension of the map where the receiver obtains a copy of a state σ0
whenever the messages are transmitted without errors, and a copy of a state σ1, when instead the original
state gets fully depolarized. By varying the overlap between the flag states, the resulting transformation
nicely interpolates between the depolarizing map (when σ0 ¼ σ1), and the d-dimensional erasure channel
(when σ0 and σ1 have orthogonal support). We find sufficient conditions for degradability of the flagged
channel, which let us calculate its quantum capacity in a suitable parameter region. From this last result we
get the upper bound for the depolarizing channel, which by a direct comparison appears to be tighter than
previous available results for d > 2, and for d ¼ 2 it is tighter in an intermediate regime of noise.
In particular, in the limit of large d values, our findings present a previously unnoticed Oð1Þ correction.
DOI: 10.1103/PhysRevLett.125.020503

Introduction.—QuantumShannon theory [1,2] provides a
characterization of the maximum transmission rates
(capacities) achievable in sending classical or quantum data
through a quantum channel. Unfortunately, at variance with
the classical case [3], formost of themodels the evaluation of
these quantities cannot be performed algorithmically, the
computation being so hard that the identification of good
bounds is already considered as an important achievement.
The difficulty of the task originates on one hand from the
possibility of sending entangledmessages across successive
uses of the transmission line, and, on the other hand, from the
superadditivity properties of the information-theoretic quan-
tities involved in the computation. Instances of superaddi-
tivity have been shown for the classical capacity [4], the
quantum capacity [5–11], the classical private capacity [12],
and for the trade-off capacity region [13,14]. A striking
consequence of these effects is superactivation: two chan-
nels with zero quantum capacity show nonzero quantum
capacity if used together [15,16]. However, it is crucial to
stress that, rather than being an exotic phenomenon, super-
additivity manifests itself even in the simplest cases. Indeed,
it holds for the coherent information of the depolarizing
channel (DC) [5,6], which is the simplest and most sym-
metric nonunitary quantum channel [17]. Still, despite
the considerable efforts that have been spent on this issue
[18–30], its quantum capacity [31,32] is not known.
DC has a peculiar position in the theory which makes it

an important error model for finite dimensional systems,
like qubits in a quantum computer. Indeed by pre- and
postprocessing and classical communication via twirling
[33], any other channel can be mapped into a DC whose
quantum capacity is lower than or equal to the quantum
capacity of the original channel [34]. Accordingly the value
of the quantum capacity of DC can be used to lower bound

the minimum number of physical qubits needed to preserve
quantum information in quantum processors and memories.
In the view of these facts it is clear that the DC quantum
capacity problem is of primary importance in quantum
information theory: solving it would likely help in under-
standing the peculiar difficulties of quantum communica-
tion and error correction.
The main result of this Letter is a new analytic upper

bound to the quantum capacity of the DC valid for any
finite dimension, which outperforms previous results in
many different regimes. To achieve this goal we rely on
flagged extensions of quantum channels, a construction
which, in other contexts, proved to be a powerful tool, see,
e.g., Ref. [10]. In our case we define the flagged depola-
rizing channel (FDC) assuming that if Alice sends the
density matrix ρ, with probability p Bob receives such a
state together with an ancillary system prepared into the
state σ0, and, with probability 1 − p, the completely mixed
state together with the ancillary system in σ1. The density
matrices σ0 and σ1 behave as flags that encode information
about what happened to the input and, at variance with
previous approaches [19,21,24], are not assumed to be
necessarily orthogonal—when this happens Bob can know
exactly if he received the original message or an error, and
our FDC is equivalent to the erasure channel [35]. By
tracing out the flags, Bob effectively receives the output of
a DC. This means that the FDC is a better communication
line than its associated DC, therefore every capacity of the
former is larger than or equal to the corresponding value of
the latter. Most importantly it is possible to find p; σ0; σ1
such that the FDC becomes degradable [36,37]. Degradable
maps are a special set of quantum channels which have the
peculiar property of admitting a nonsuperadditive coherent
information [18], hence allowing for a quantum capacity
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formula that needs not to be regularized over infinite many
channel uses—see Eqs. (3) and (9) below. Exploiting this
fact and the special symmetries of the model we can
produce an analytical expression for the quantum capacity
of the FDC which in turns provides an analytic bound
(throughout the Letter “bound” refers to upper bound,
unless explicitly stated otherwise) for the quantum capacity
of the associated DC.
Furthermore, exploiting a convexity argument given in

[19], we also show how to merge our new inequality with
those obtained in [19,21] to get an extra bound. The
resulting constraint is strictly better than the one obtainable
by [19,21] alone and yields the best analytic limit on the
quantum capacity of the DC for all choices of d and p. For
d ¼ 2, the bounds in [22,23] perform better at low noise,
while for higher noise our expression is better, surpassing
also the one in [24] in an intermediate region. Most notably
the improvement increases in the large d limit: the gap
between the best upper bound and lower bound of the
quantum capacity is given by a Oð1Þ function of p, which
is differentiable in p ¼ 0, in contrast with previous
bounds for which the Oð1Þ term of the gap is the binary
entropy hðpÞ.
Preliminaries.—Given a finite dimensional Hilbert space

H, we write the space of linear operators onH as LðHÞ and
the set of density operators as SðHÞ. The action of a
quantum channel Λ: LðHAÞ → LðHBÞ connecting two
systems described by the Hilbert spaces HA and HB, is
a completely positive trace preserving (CPTP) map [2]
on LðHAÞ which can always be cast in the Stinespring
representation form,

ΛðθÞ ¼ trE0 ðUAEθA ⊗ jeihejEU†
AEÞ; ð1Þ

where jeiE is the state of environment interacting with the
system A, and UAE is an unitary interaction acting on
HA ⊗ HE ≅ HB ⊗ HE0 . In this setting the complementary
channel Λ̃: LðHAÞ → LðHE0 Þ is defined as the CPTP
mapping

Λ̃ðθÞ ≔ trBðUAEθA ⊗ jeihejEU†
AEÞ: ð2Þ

The channel Λ is said to be degradable if there exists a third
CPTP channel W: LðHBÞ → LðHE0 Þ (dubbed degrading
channel) such that W∘Λ ¼ Λ̃. Similarly, it is said to be
antidegradable if instead there exists a CPTP channel V:
LðHE0 Þ → LðHBÞ such that V∘Λ̃ ¼ Λ. Finally, we call N a
degradable extension of Λ if N is degradable and there is a
second channel R such that R∘N ¼ Λ.
The quantum capacity QðΛÞ gives the highest rate at

which quantum information can be transmitted over many
uses of Λ. In this case from [32,38] we get QðΛÞ¼
limn→∞QnðΛÞ¼ limn→∞maxρ∈SðH⊗n

A Þð1=nÞJðρ;Λ⊗nÞ, with
Jðρ;Λ⊗nÞ ≔ S½Λ⊗nðρÞ� − S½Λ̃⊗nðρÞ�, and SðρÞ being the
Von Neumann entropy. Due to the no-cloning theorem [39],

the quantum capacity of an antidegradable channel is
zero. On the contrary, as anticipated in the introduction,
for a degradable channel the regularization limit on n is
not needed and the expression for QðΛÞ reduces to the
following single-letter formula:

QðΛÞ ¼ Q1ðΛÞ ≔ max
ρ∈SðHAÞ

Jðρ;ΛÞ; ð3Þ

an identity which, while not having a simple physical
interpretation, mathematically originates from the monot-
onicity of the relative entropy under CPTP transforma-
tions [37].
The FDC model.—In a standard approach to quantum

communication the interaction between the quantum car-
riers of the information and their environment, the asso-
ciated interaction time, as well as the state of environment
are assumed to be known. However, it is possible to think
about scenarios where the state of environment is changing
in time and it can be monitored with quantum measure-
ments. In this setting, suppose that with probability pi the
state of environment is the state σi, and that when this
happens information carrier gets transformed by a given
CPTP transformation Λi. If there was no other information
except the probability distribution of the environment, the
resulting channel would be just the weighted sum of each
individual map, i.e., Λ ≔

P
i piΛi. Instead, we assume

that in our case Bob collects a copy of the environment
describing the channel as

Λ
∘ ½ρ� ≔

X
i

piΛi½ρ� ⊗ σi; ð4Þ

where ρ is any input state and the σis live on an auxiliary
space H1 on which Bob has complete access. More
abstractly, this model can be also seen as a quantum
channel with quantum flags, where with probability pi
the channel acts as Λi and Bob receives a quantum flag σi
that encodes in a quantum state the information about

which channel is acting. As Λ can be obtained from Λ
∘
by

simply tracing away the flags, it turns out that the capacities
of the latter provide natural upper bounds for the corre-
sponding ones of the former, i.e.,

QðΛÞ ≤ QðΛ∘ Þ: ð5Þ

A special example of a channel of the form (4) was
considered in [19,21] where the σi were assumed to be
orthogonal pure states. Here, on the contrary, we allow the
σi to be mixed and not necessarily orthogonal and focus on
the case where the resulting mapping has the form

Λ
∘ d
p½ρ� ¼ ð1 − pÞρ ⊗ σ0 þ pTr½ρ� I

d

d
⊗ σ1: ð6Þ

PHYSICAL REVIEW LETTERS 125, 020503 (2020)

020503-2



This channel acts on a d dimensional Hilbert space and it
can be expressed as in (4) with two components, the first
associated with the identity channel and the second
associated with a completely depolarizing transformation
that replaces every input with the completely mixed state
Id=d. Notice however that Eq. (6) describes a proper CPTP
mapping also for values of p larger than 1—indeed its Choi
state [1,2] can be easily shown to be positive for any p > 0

such that ð1 − pÞσ0 þ ðp=d2Þσ1 ≥ 0. Most importantly,
irrespectively from the value of σ0 and σ1, by removing

the flag states from (6) via partial trace, Λ
∘ d
p reduces to a

standard DC,

Λd
p½ρ� ≔ ð1 − pÞρþ pTr½ρ� I

d

d
: ð7Þ

Therefore, invoking the monotonicity (5) we can upper
bound the rather elusive quantum capacity of Λd

p, with the

quantum capacity of Λ
∘ d
p that, as we shall see in the

following section, is relatively easy to characterize.
The quantum capacity of FDC.—A fundamental ingre-

dient in studying the capacities of Λ
∘ d
p is that such channel is

covariant under the action of arbitrary unitary transformations

U of SUðdÞ, i.e., Λ
∘ d
p½UρU†� ¼ ðU ⊗ IÞΛ

∘ d
p½ρ�ðU† ⊗ IÞ, the

operators I being the identity on the flags. This implies that
the output Von Neumann entropy associated with a generic
pure input state is a constant quantity tðp; d; σ0; σ1Þ, which
does not explicitly depend upon the specific value of jψi, but
only upon the parameters that characterize the map, i.e.,

SðΛ
∘ d
p½jψihψ j�Þ ¼ tðp; d; σ0; σ1Þ. We restrict to the case

where σ1 ¼ je1ihe1j is a pure state, and σ0 is diagonalizable
in that basis, i.e., σ0 ¼ c2je1ihe1j þ ð1 − c2Þje⊥1 ihe⊥1 j. For
this case both Λ

∘ d
p and its complementary counterpart can be

parametrized by the fidelity between σ0 and σ1, i.e., via

the parameter c [in particular we can write Λ
∘ d
p;cðρÞ ≔

ð1 − pÞρ ⊗ ½c2je1ihe1j þ ð1 − c2Þje⊥1 ihe⊥1 j� þ pðId=dÞ ⊗
je1ihe1j]. In the Supplemental Material [40], using a simple
measurement and action channel as a candidate for the

degrading channel, we showed that Λ
∘ d
p;c is degradable for

c fulfilling the inequality

c ≤ cðpÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2pÞ=ð2 − 2pÞ

p
: ð8Þ

In this regime due to Eq. (3) the quantum capacity ofΛ
∘ d
p;c can

be obtained by maximizing its single shot coherent informa-

tion Jðρ;Λ∘ dp;cÞ. While in general the maximum of such
quantity does not allow for a close analytical expression,
in our case the problem gets further simplified when

putting together the covariance of Λ
∘ d
p;c and a side effect of

degradability, i.e., the concavity of the functional Jðρ;Λ∘ dp;cÞ
in the input state ρ [44]: these two facts imply that Jðρ;Λ∘ dp;cÞ
gets its maximum on the completely mixed input state, i.e.,

QðΛ
∘ d
p;cÞ¼Q1ðΛ

∘ d
p;cÞ¼max

ρ
Jðρ;Λ

∘ d
p;cÞ¼J

�
Id

d
;Λ
∘ d
p;c

�

¼ logdþS½ð1−pÞσ0þpσ1�−tðp;d2;σ0;σ1Þ: ð9Þ

For the interested readerwe point out that in theSupplemental
Material [40] we also report other capacities of the FDC,
specifically the entanglement assisted capacity and product
state classical capacity.
Upper bounds for the DC quantum capacity.—

According to Eq. (5), the quantum capacity of the DC Λd
p

can be upper bounded by the capacity ofΛ
∘ d
p;c, irrespectively

from the choice we make on the parameter c, as long as
the degradability constraint (8) holds true. Intuitively
however, as c gets larger, the bound gets better. To get
the best upper bound for the quantum capacity of Λd

p we
hence set c ¼ cðpÞ. Accordingly, using the expression for
tðp; d2; σ0; σ1Þ computed in the SupplementalMaterial [40],
we can write

QðΛd
pÞ ≤ QðΛ∘ dp;cðpÞÞ ¼ log dþ η

�
1

2

�

− η

�
1

2
−
ðd2 − 1Þp

d2

�
− ðd2 − 1Þη

�
p
d2

�
; ð10Þ

where ηðzÞ ≔ −z log z [an alternative inequality can be
obtained by choosing the flag states to be pure: as discussed
in the SupplementalMaterial [40] the resulting expression is
however much more involved than (10) and a numerical
check reveals that it is worse than the latter]. In order to test
the quality of our findings we now proceed with a com-
parison with the limits previously proposed in the literature.
We start considering first the low noise regime (p ≪ 1)
where (10) gives

QðΛ∘ dp;cðpÞÞ ¼ logdþ d2 − 1

d2

�
log

�
p
d2

�
− log eþ 1

�
p

þOðp2Þ: ð11Þ

It turns out that for d ¼ 2, the above expression is less tight if
compared with the numerical bounds given in Refs. [22,24]
(see Fig. 1), and with the analytic bound of Ref. [23] which
for this special regime implies

QðΛ2
pÞ ≤ QðΛ∘ dp;cðpÞÞ −

3

4
pþOðp2 logpÞ: ð12Þ

Things however change when we move out from the d ¼ 2,
low noise regime for which to our knowledge the best
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performances up to date are provide by the results presented
in Refs. [19,21]. The first one consists in the following
inequality [21]

QðΛd
pÞ ≤ f1;dðpÞ ≔ η

�
1þ ðd − 1Þγ

d

�
þ ðd − 1Þη

�
1 − γ

d

�

− η

�
1 −

ðd − 1Þγ
d

�
− ðd − 1Þη

�
γ

d

�
; ð13Þ

with γ≔2d=ðd2−1Þf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p½ðd2−1Þ=d2�

p
−ð1−p½ðd2−1Þ=2�Þg.

The second one instead relays on the fact that Λd
p is anti-

degradable when p ¼ d=½2ðdþ 1Þ� [19,21,45]; it implies
that

QðΛd
pÞ ≤ f2;dðpÞ ≔

�
1 −

2pðdþ 1Þ
d

�
log d: ð14Þ

A direct comparison reveals that our inequality (10) beats
both (13) and (14) in most of the parameter space, see e.g.,
Fig. 2 where we plot the relative functions for two values of
d. We further notice that both f1;dðpÞ and f2;dðpÞ, as well as
our boundQðΛ∘ dp;cðpÞÞ, originate from degradable extensions
of DCs.We can hence invoke the convexity of upper bounds
obtained from degradable extensions [19], to derive the
following improved inequality (see the Supplemental
Material [40] for the detailed proof)

QðΛd
pÞ ≤ convfQðΛ∘ dp;cðpÞÞ; f1;dðpÞ; f2;dðpÞg; ð15Þ

where the convex hull convfg1ðpÞ; g2ðpÞ;…g is defined as
the maximal convex function that is less than or equal to all
the giðpÞ s. Equation (15) is our ultimate result which,
outside the special d ¼ 2 low noise regime, clearly over-
comes all the others results reported so far—see Fig. 2.
As a final observation we now focus on the asymptotic

expansions of the various bounds for large d. Defining
δðpÞ ≔ ηð1

2
Þ − ηð1

2
− pÞ þ ηð1 − pÞ from Eqs. (10), (13),

and (14) we get

QðΛ∘ dp;cðpÞÞ ¼ ð1 − 2pÞ logd − hðpÞ þ δðpÞ þO
�

1

log d

�
;

f1;dðpÞ ¼ ð1 − 2pÞ logdþO
�
log d
d

�
;

f2;dðpÞ ¼ ð1 − 2pÞ logdþO
�
log d
d

�
; ð16Þ

with hðpÞ ≔ −p logp − ð1 − pÞ logð1 − pÞ the binary
entropy functional [3]. Due to the fact that for p < 1=2

FIG. 1. Quantum capacity upper and lower bounds for d ¼ 2: in
this case it can be shown that Q1 ¼ Qlow, the lower bound from
Eq. (17), and the shaded region is excluded by the lower bound;
Conv is the convex hull of all the upper bounds defined in
Eq. (15), thus the allowed region for Q is the below Conv and
above Q1. Finally, the dashed lines represent the numerical upper
bounds of Refs. [22,24].

FIG. 2. Quantum capacity bounds for d ¼ 4 (left) and d ¼ 10 (right): Qlow is the lower bound from Eq. (17); f1;d and f2;d are the
bounds of Refs. [19,21] [see Eqs. (13) and (14)]; FDC is the bound of Eq. (10); while finally Conv is the convex hull of all the other
bounds defined in Eq. (15). The shaded region is excluded by the lower bound, thus the allowed region for Q is below Conv and above
Q1. Inset: comparison for the Oð1Þ gaps for large d between the upper bounds and the lower bound Qlow as a function of p: for the
bounds of Refs. [19,21] the gap is given by the binary entropy function hðpÞ, for ours it is instead given by the function δðpÞ of Eq. (18).
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(where the quantum capacity of the DC is not zero) one has
hðpÞ ≥ δðpÞ, Eq. (16) makes it clear that our bound is the
only one that shows an Oð1Þ term which is not zero (and
negative)—see inset in the right panel of Fig. 2. A deeper
insight on this can be gained by considering the lower
bound of QðΛd

pÞ one gets by evaluating Jðρ;Λd
pÞ on the

completely mixed state, i.e.,

QðΛd
pÞ ≥ QlowðΛd

pÞ ≔ J

�
Id

d
;Λd

p

�
;

¼ logd − η

�
1 − pþ p

d2

�
− ðd2 − 1Þη

�
p
d2

�
;

¼ ð1 − 2pÞ logd − hðpÞ þO
�

1

log d

�
: ð17Þ

From Eq. (16) it then follows that the gap between our
bound and QlowðΛd

pÞ scales as

QðΛ∘ dp;cðpÞÞ −QlowðΛd
pÞ ¼ δðpÞ þO

�
1

logd

�
; ð18Þ

while the differences between the other upper bounds and
the lower bound exhibit a Oð1Þ gap equal to hðpÞ which as
already noticed is always larger than δðpÞ for the relevant
values of p. In particular, it appears that our inequality
gives a much better bound for low p, since hðpÞ has
derivative that diverges as − logp when p → 0, while δðpÞ
scales linearly in p.
Discussion.—We introduced a specific flagged version

of DC that, for a certain values of the parameter, is
degradable. This allows us to compute an analytic bound
for the quantum capacity of the original map. Our result
works in any dimension, and it is the tightest available
analytical upper bound. Unlike other degradable extensions
of depolarizing channel [19,21], the introduced flags are
not orthogonal. However, considering a general form for
the flags and finding the degradability conditions is an open
question. The idea we used is of general applicability and
could give new good bounds for many other channels.
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