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The precise measurement of a magnetic field is one of the most fundamental and important tasks
in quantum metrology. Although extensive studies on quantum magnetometry have been carried out
over past decades, the ultimate precision that can be achieved for the estimation of all three components
of a magnetic field under the parallel scheme remains unknown. This is largely due to the lack of
understandings on the incompatibility of the optimal probe states for the estimation of the three
components. Here we provide an approach to characterize the minimal tradeoff among the precisions
of multiple parameters that arise from the incompatibility of the optimal probe states, which leads to the
identification of the ultimate precision limit for the estimation of all three components of a magnetic field
under the parallel scheme. The optimal probe state that achieves the ultimate precision is also explicitly
constructed. The obtained precision sets a benchmark on the precision of the multiparameter quantum
magnetometry under the parallel scheme, which is of fundamental interest and importance in quantum

metrology.
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Many applications of quantum metrology can be reduced
to the measurement and estimation of a magnetic field. For
example, various applications in quantum biosensing with
nitrogen vacancy (NV) centers are achieved by measuring
the magnetic field of the targeted biomolecules [1].
Quantum magnetometry under the parallel scheme that
utilizes entangled probe states, as shown in Fig. 1, has been
studied over many decades since the pioneer work of
Helstrom and Holevo [2,3]. The ultimate precision, how-
ever, is only well understood for the single-parameter
quantum magnetometry. An example extensively studied
is the estimation of the magnitude of a magnetic field. In
this case, the ultimate precision for the local estimation,
where the experiment needs to be repeated for sufficient
number of times, is achieved by the GHZ-type state as

[(]00...0) + [11...1))/+/2] [4,5]. For the Bayesian estima-
tion, the minimal Holevo covariance is achieved with the
Berry-Wisemen type of states [6]. For the estimation of all
three components of the magnetic field, the answer is only
known for special cases. For the Bayesian estimation, the
optimal performance for the estimation of the generated
unitary rotation has been studied under the assumption
of uniform prior distribution [7-13]. For the local estima-
tion, the optimal performance is only known when the
unitary rotation generated is close to the identity and the
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figure of merit is taken as the sum of equally weighted
variance [14-23], for which it has been shown that the
best precision is achieved by 2-anticoherent states [14].
For general unitary rotations, a heuristic state, which is also
2-anticoherent, is provided in [15] with the achieved
precision matching the optimal performance in the weak
limit, i.e., when the generated unitary is close to the
identity. In general, however, the optimal performance of

| ancilla /

> ‘
;‘ Entangled probe ‘ Channel ' Measurement
| \
FIG. 1. Parallel scheme for multiparameter quantum magne-

tometry. Here U, = ¢~'8" describes the unitary dynamics on the
spin due to the interaction with the magnetic field. An additional
ancillary system may be used.
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the multiparameter quantum magnetometry under the
parallel scheme remains unknown.

This is related to a main research theme in multi-
parameter quantum estimation, which is to quantify the
tradeoff among the precisions of multiple parameters
[24-42]. Over the past decades there have been extensive
studies on this theme, however, the minimal tradeoff
remains only known for very limited cases [24-27]. The
study on the tradeoff induced by the incompatibility of the
measurements has made much progress [3,32-40,43-48].
However, the tradeoff induced by the incompatibility of the
optimal probe states is still poorly understood. Here we
present an approach to quantify the tradeoff induced by the
incompatibility of the optimal probe states. With this
approach we obtain the minimal tradeoff for the multi-
parameter quantum magmetometry under the parallel
scheme, where the figure of merit can be taken as the
sum of arbitrarily weighted variance and the generated
unitary does not need to be close to the identity operator.
This enables the identification of the ultimate precision
limit for multiparameter quantum magnetometry under the
parallel scheme, which can also be used to calibrate the
ultimate performances of the quantum reference frame
alignment, quantum gyroscope, etc. We note that additional
controls during the evolution are not considered in the
parallel scheme. Controlled schemes have been studied in
[26,49,50], where it has been shown that optimal controls
may further improve the precision.

We first use spin-1/2 as the probe. The dynamics for a
spin-1/2 in a magnetic field can be described by the
Hamiltonian H =B -0 = B,o; + B,0, + B3o;, where
01, 05, and o3 are Pauli matrices. This can be equivalently
written as H = Bn -6 with B = \/B? + B3 + B3 as the
magnitude and n = (sinfcos ¢, sin @sin ¢, cos @) as the
direction of the magnetic field. After an evolution time ¢,
the dynamics generates a SU(2) operator as U, = e~/
with o = Bt. As we allow the figure of merit taken as the
sum of arbitrarily weighted variance, we can just consider
the precision for the simultaneous estimation of «, € and ¢
with the figure of merit as w;84% + w,80* 4+ w35¢°, here
wi, Wy, w3 >0 are the weights and %% = E[(X — x)?]
denotes the variance for an unbiased estimator. The
precision of various other parameters can be expressed
in terms of a, 0, and ¢ with different weights. For example,
the precision for the estimation of B is related to a as
8B* = (8&*/1%), thus the sum of equally weighted variance
for (B,6.¢) can be written as 8B+ 60° + 6¢° =
(1/12)60% + 60* + 6¢*. Similarly the sum of equally
weighted variance for the estimation of (B;, B,, B3) can
be expressed as 6B7 + 6B3 + 6B% = (1/12)(66% + a266*+
a?sin205¢*). This differs from most previous studies which
take the figure of merit as the sum of equally weighted
variance under a specific parametrization [15-19,22,
51,52].

The precision limit for a parameter x can be calibrated by
the quantum Crdmer-Rao bound (QCRB)

%2 > ——, (1)

here J, = 4(AH?) is the quantum Fisher information
(QFI), m is the number of repetition (which we will neglect
as it accounts the classical effect). H, is the generator of the
corresponding parameter x [2,3,53], which is defined as
H,=iU(d,U,), U, = e ™ is the generated unitary
[40,54-57], (AH?) = (®|H2|®) — (®|H,|®)? is the vari-
ance of H, with respect to the initial probe state |®).
For x € {a,0, ¢}, the corresponding generator can be
obtained as

H,=c,n,- o,
Hg = Cyhy - O,

H¢:C¢n¢'6, (2)

with ¢, =1, n,=n = (sinfcosdg,sinfsing,cosb),
cp =sina, ny=cosan; —sinan,, c, = sinasind and
n, = cosan, + sinan,, respectively, here n; = dpn =
(cos@cos ¢, cosOsing, —sinf), n, =n xn; = (—sing,
cos ¢,0).

With N spins interacting with the field, aided with

an ancilla, the generator for each parameter is H)((M =

SNLHE, where HY =1® - ®@IQH, @1 ®
I ® I, denotes the generator on the kth spin, / denotes

the identity operator and /, denotes the identity operator on

(N)

the ancilla. The variance of Hy ’ is given by

where the first term can be expanded as

N-1

() + S I,

0 j#k

—a(ve ). @)

#k

(HM)?) =

=~
Il

and the second term as (H{")2 = c2(30=1 r¥)2, here
P = wlpib(m, e @n,-6) <1, rY =u(p®n, o)
with pU*) as the reduced density matrix for the jth and
kth spin and p(¥) as the reduced density matrix for the kth
spin [15,22,52]. It is easy to see the same formula holds
without the ancillary system (which corresponds to taking
1, = 1), however, for finite N the ancillary system provides
more room on the choices of pU*), which can be seen in the
analysis of the optimal states below.
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It is easy to see (A[HM)?) < N2c2 where the equality

can be reached if and only if > M-I PP =0and Y =1
for all j, k. For a single parameter this can be achieved by
choosing the probe state as the GHZ-type state,
|®@,) = (1/V2)(|+,)8 +|—,)®), where |+,) are the
eigenstates of H,. It is easy to check that the reduced
tWO-SpiH state is p<j’k) = % (| +x +x><+x +x | + | x _x>
(== )=1UIVY +n,-6Q@n, o) for all (j, k) and

(%) /2 for all k, thus

(k) _ (k)

ryx = 1 and ry’ = 0. The highest precision for a single
parameter can thus be achieved.

For the estimation of multiple parameters, however, the
issue is much more complicated. A main research theme in
multiparameter quantum metrology is to determine whether
it is possible to achieve the highest precisions for all
parameters simultaneously and calibrate the minimal trade-
off among the precisions of different parameters when it is
not possible.

To calibrate the tradeoff, we write a general two-qubit
state as

pUk) = [’k+2r 0 ®I +er
+Zrlp

here I,p€{a,0,¢}, and we have denoted o, =
n,-6, cg=nyg-6 and oy,=n,-6. Now let U=

¢!/ p=i(h/2)03 g=i0/2)72 " \which is the unitary that sat-
isfies Uo U = 04, Uo,U' = 6, and Us3U" = o, and let
|®UX)Y = (U/v/2)(|01) = ]10)), then |DUL)(DUH)| =
zlx[l”‘k) ~ Y ctangy o ® )] As pUM >0, we have
(DUK) | pUR)|dUR)Y = tr(plk)|dULY (@®UHX]) > 0, which
gives a constraint as r,(m ) + ”<99 ) + r((ﬁ ¢> < 1. This clearly

shows that rr(xilk>’ r(ajek)’ rf(ﬁ]‘ﬁk)

the reduced single spin state is p*) =

@, (5)

can not equal to 1 simulta-
neously and the tradeoff among the precisions of different
parameters is unavoidable. It turns out such constraint fully
calibrates the tradeoff among the precisions.

We consider the figure of merit as w,66% 4+ wy60” +
w¢5<;§2, where w; > 0 are weights that can be chosen
arbitrarily according to specific needs. Under the constraint

i’Em + r((,g )+ rfw) < 1, the sum of weighted variance is
then bounded below as [58]

(\/ ot |sma| + \911@1902
AN(N+2)

WG +wod0* +w,50* > (6)
This bound can be saturated when the reduced two-qubit

state takes the form as pU*) = 1[04 4 ?aaagj J @ o) +

rggde ®09 +r¢¢o¢ ®a¢]f0ra110<j<k<N—1
with

- (N + I)M—%— |sin\{En9|
Y- D) (y/Wwe + |\s{;v_2\ + \siﬁnﬂl),
o= (N+1) |\S{IVE\ - \/@_ \singnﬁ\ ’
(N = 1)(yWa + |;{E\ + \sirﬂnﬂ)
o = (N+1) |s1n\g§n6'\/_w_\/va _\/w_%{rvlv_zz ’ (7)
(N = D)(\We + 1ng + rsmasina)

and the quantum Fisher information matrix is diagonal. The
problem now is to identify the states whose reduced two-
spin states are of this form which leads to the minimal
tradeoff among the precisions. We first consider the case
with ancilla, then without ancilla.

By employing a qutrit (or three levels of two additional
spin-1/2) as the ancillary system we can prepare the probe
state as

[ @sa) = 5a|Pa) @ [0) + 59|Pp) ® [1) + 54|Py) ® [2).
(8)

here [®,) = (l/\/i)(|+x>®N + |_x>®N) with [£,) as the
eigenstates of H,, x € {a,0, ¢}, N is the number of spins
that interact with the magnetic field. The reduced two-spin
state of this state is

1..,. .
) (104 4 |s0,|26((;,’> ® o)

+ |sg |209 ®09 + |s(,1,|2

k) —

® 0'¢ ] )

for all 0<j < k <N -1 and the reduced single spin
state is p®) =10 /2 for all 0 <k <N — 1. For multi-
ple parameters the QCRB is given by Cov(%) > J7!,
where J is the quantum Fisher information matrix
whose entries can be obtained from the generators as
Jip = A0 (@sa[{H]") HY}|@ss) — (@alH)|@5,) x
(@p|HY |®gp)], 1 p € {a. 0.} and |Dgy) is the initial
probe state. For the state in Eq. (8), it is straightforward
to check (see the Supplemental Material [58]) that J
is a diagonal matrix. If the optimal 7,,, Fgy, and 7, in
Eq. (7) are all non-negative, then by choosing s, = \/Fgq
So = \/Tgg, and s, = ﬁ , the ultimate lower bound in
Eq. (6) is saturated. For sufficiently large N, this is always
the case. It is also straightforward to check the weak com-
mutativity condition, (®(a,0,y)|[L;,L,]|®(a.6.y)) =0,
holds for all I, p € {a, 8, ¢} [60], here ®(a,O,y) is the
final state and L, is the symmetric logarithmic derivatives
(SLD) for parameter p € {a, 0, ¢}, which is the solution to
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the equation 0,p = %(L P+ pL p). This condition, which
can be simplified as Im[(0,®(a, 0, y)|0,P(a, 0,y))] = 0,
ensures the existence of a measurement saturating the
QCRB [27,45,60]. We provide an explicit construction
of the optimal measurement in the Supplemental Material
[58]. The lower bound in Eq. (6) can thus always be
achieved for sufficiently large N, which is then the ultimate
precision limit that can be achieved under the parallel
scheme.

If some 7, in Eq. (7), x € {a, 0, ¢}, are negative for
small N, then the lower bound in Eq. (6) can not be
saturated by the probe states of this form. The best
precision achieved by these states can be obtained by
optimizing the coefficients s,, sy and s [58]. In Fig. 2 we
plotted the precisions that can be achieved for different
weights and A, it can be seen that the obtained precision is
already close to the ultimate bound even for small N, and it
saturates the ultimate bound when N gets large.

O With ancilla
Without ancilla

& Previous heuristic state

Ultimate lower bound

Weighted sum of variance

(WS
\0.0]

Weighted sum of variance

we = 1,wp = a2, wy = a?sin®

2 4 8 16 32
N
FIG. 2. (a) Weighted sum of variance with w, = 1, wy = 1 and
wy = 1, which corresponds to 562 + 80° + 5(252. (b) Weighted
sum of variance with w, = 1,wy = o* and w,, = o sin” 6, which
corresponds to 6B% + 6B3 + 6B3. Three typical sets of values as

specified in the figure for each case. The time has been
normalized, i.e., t = 1.

The ultimate lower bound in Eq. (6) can also be achieved
without the ancillary system by preparing the probe state as
|q)()> = ﬁ'q)u& + \/m‘q)f» + \/m|q)(/)> when N — 0,
as it is easy to verify that in this case the reduced two-qubit
state, when N — oo, is the same as the optimal reduced
two-qubit state required to saturate the ultimate lower
bound [58].

We now compare the obtained precision with pre-
vious results. For the estimation of the three components
of the magnetic field, B, = (a/f)sinfcos¢p, B, =
(a/t)sin@sin ¢, By = (a/t)cosd, we have 6B% + 5B% +
5B3 = (802 + a266% + oPsin205¢*) /12, which corresponds
to w, = 1/1%, wo=0a?/1*, wy = a?sin*6/*. The ultimate
precision is then given by

(1+2/g )

sin

6B} + B3 + 6B% >
pron _4N(N+2)

(10)
While the best precision obtained previously with the heuristic
state  [15] is  6B? + 6B3 + 6B3 > 3[1 4 2(a?/sina)]/
[4AN(N +2)#*]. They are equivalent only at the weak
limit when a@ = Bt — 0, as shown in Fig. 2(b). The dif-
ference between them, which is 2(|(a/sina)| —1)%/
[4N(N + 2)¢?], can be large particularly when a — mz.

This approach can also be applied to general spin-S,
where the Hamiltonian is H = Bn -S = B{S| + B,S, +
B3S5, here n = (sinfcos ¢, sin Osin ¢, cos 9), S, S,, and
S3 are spin-S operators that satisfy [S;,S,] = iSs,
(S5, S3] = iSy, [S3,S;] = iS, (with this commutation rela-
tion, S; = (0;/2) when S = 1/2, which has an extra factor
of % comparing with the Pauli matrices). For § > 1/2,
S? et I, instead ST+ S3 + S3 = S(S + 1)1. The generators
for @, @ and ¢ can be similarly obtained as H, = ¢,S,,
Hy = cySy, and Hy = c4S,, where ¢, =1, S, =n, S,
n, =n = (sinfcos ¢, sin@sin ¢, cosh), cy = 2sin(a/2),
So =ng - S,ny = cos(a/2)n, —sin(a/2)n,, c, = 2sin(a/
2)sin6, Sy =mn, - S, ny =sin(a/2)n; + cos(a/2)n, and
n; = Oygn, n, = n X n;. Similarly we can obtain the lower
bound for the weighted sum of variance as

W02 + WSO +w 4007
Vo V7% )2
> 1 < VWa +| sm‘;\ + |251n—sin0|)
[Zk er{aé’qﬁ} rxx +Zﬁék er{at‘)qﬁ} Tyx

here ry;):tr(p(k)S%), r)((jxk)—tr(pU’k)Sx@Sx),
{a,0,¢p}. Tt is easy to get

tr(p(k er{aﬁ(l)} SZ) = S(S + ) The

rj(cx >, however, are much harder to obtain compared to

spin-1/2. In the Supplemental Material [58], we show that

S vctaogy Sx © Sy < S thus oy 1o < 82 With
these constraints we obtain the ultimate lower bound [58]

, 11
gy (D

Vxe

D (k) _
x€{a,0.¢} Ixx =
constrains on
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Weda? + w0 + w400

N V5 2
(V ot \2511102| + [2sing 51n9|)
= ANS(NS + 1)

(12)

With an ancillary qutrit, this ultimate lower bound can be
saturated for sufficiently large NS with the state |®gy) =
Sa|Pa) ® [0) + 59| Pp) ® |1) + 54[Py) ® [2), here [®,) =
(1/V2)(|+£,)® + |—,)®) with |+,) as the eigenstates
of S, corresponding to the eigenvalue +S, respectively,
Vx € {a,6,¢}, and the coefficients should satisfy

L NS r| LT
(2NS = 1) (/g + g + o)
e (2NS + 1) g — 2‘7%‘—\/@
’ (2NS - 1)(\/W_a+z\$i\+2|m\r{—:n9|)
(NS + 1) 5reg = W — 55
sy = (13)

NTi
(ZNS - 1)(\/Wa + z\gm(i’\ + 2[sing smHI)

which always have solutions when N S is sufficiently large. Itis
also straightforward to check that the weak commutativity
condition holds, the ultimate lower bound can thus always be
saturated for sufficiently large NS.

Summary.—The ultimate precision of quantum magne-
tometry under the parallel scheme is of fundamental interest
and importance in quantum metrology. It can also be
directly used as the benchmark for the performance of
quantum gyroscope and quantum reference frame align-
ment. Our approach connects the tradeoff directly to the
constraints on the probe states and the generators, which
makes the tradeoff transparent and deepens the under-
standings on the incompatibility of the optimal probe states.
We expect this approach can lead to many useful (may not
always be achievable, nevertheless nontrivial) bounds in
various scenarios of multiparameter quantum estimation.
Future studies can include measurements suitable for
specific physical settings and generalization to noisy
dynamics via the purification approach [61-66]
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