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Quantum interference is typically detected through the dependence of the interference signal on certain
parameters (path length, Aharonov-Bohm flux, etc.), which can be varied in a controlled manner. The
destruction of interference by a which-path measurement is a paradigmatic manifestation of quantum
effects. Here we report on a novel measurement protocol that realizes two objectives: (i) certifying that a
measured signal is the result of interference avoiding the need to vary parameters of the underlying
interferometer, and (ii) certifying that the interference signal at hand is of quantum nature. In particular, it
yields a null outcome in the case of classical interference. Our protocol comprises measurements of cross-
correlations between the readings of which-path weakly coupled detectors positioned at the respective
interferometer’s arms and the current in one of the interferometer’s drains. We discuss its implementation
with an experimentally available platform: an electronic Mach-Zehnder interferometer (MZI) coupled
electrostatically to “detectors” (quantum point contacts).
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Introduction.—Quantum interferometry differs from its
classical counterpart in its sensitivity to “which-path”
detection. In classical wave interference, the wave ampli-
tude can be observed along individual interfering trajecto-
ries without affecting the interference itself. Quantum
mechanically, information on the trajectory traveled by
the interfering particle destroys the interference pattern.
This is a specific example of the adverse effect of quantum
measurement: it is an invasive operation, accompanied by
backaction of the detector on the system’s state [1,2] and, in
the case of strong (projective) measurement, it leads to the
collapse of the system’s wave function [3]. As far as
establishing the fact that interference, classical or quantum,
takes place, common wisdom is that this requires continu-
ous variation of a control parameter [e.g., interferometer
arm’s length, Aharonov Bohm (AB) flux for charged
particles [4] ]. The observation of interference and of the
collapse of the coherent wave function to a state that does
not exhibit an interference pattern (following which-path
detection) are a manifestation of the quantum nature of the
phenomenon. Such combined measurements have been
demonstrated in studies of average currents of electronic
interferometers [5–9], and analyzed theoretically for single-
electron [10,11] and many-body [12,13] protocols. The
question addressed here is of a fundamental nature: can one
detect particle interference avoiding the need to vary an
external parameter, and verify that the interference signal is
inherently of a quantum nature?
Here we report on a quantum measurement protocol

that is used to certify the presence of quantum inter-
ference through an interferometer without varying the

interferometer’s parameters. We make use of minimally
invasive (weak) which-path measurements and their corre-
lations with the interferometer signal. The nonlocality of
the which-path measurements provides us access to the
individual wave packets that make the interference signal.
Continuous (weak) measurements allow one to preserve the
quantum coherence of the state since the latter is only
perturbatively affected as information is being acquired
by the detector [14,15]. Correlating the outcome of weak
quantum measurements with a subsequent strong meas-
urement forms the basis of weak values [16,17]; the latter
has been introduced to address foundational issues [18–22]
and, later on, for various applications [23–33]. A protocol
involving projective which-path measurements correlated
with the input signal has been shown to violate Bell-like
inequalities [34]. Here we define and implement a more
complex correlated measurement protocol involving simul-
taneous (weak) detection of which-path signals in the
respective arms of the interferometer and the (strongly
measured) interference signal. Our protocol provides an
experimental recipe for accessing nonclassical contribu-
tions to the interference signal. At the same time, it avoids
the need for measuring interference patterns and measure-
ment induced backaction separately. Furthermore, to under-
score the fact that our protocol addresses genuinely
quantum effects, we demonstrate that when applied to a
classical interferometer it yields a null outcome. For the
sake of specificity, we outline the implementation of our
protocol with an electronic MZI [35].
Setup and protocol.—Our electronic MZI has two

electronic beam splitters, [a.k.a. quantum point contacts
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(QPCs), cf. QPC A and B in Fig. 1]. The propagation of the
electron through the MZI is described in terms of scattering
states. For the sake of simplicity, we consider a mono-
chromatic electron beam of energy ℏω that originates from
the source Sn; the respective incoming state is given by

ψmnðx;ω; tÞ ¼
1ffiffiffiffi
L

p e−iωðt−x=vÞAmnðx;ωÞ; ð1Þ

where Amnðx;ωÞ ¼ δmn if x ∈ I, Amnðx;ωÞ ¼ ½SAðωÞ�mn
if x ∈ II, and Amnðx;ωÞ ¼ ½SAðωÞSBðωÞ�mn if x ∈ III.
The sectors I, II, and III are shown in Fig. 1 and the indices
m, n ¼ 1, 2 label the two arms of the interferometer. For a
vector state jψi denoting the amplitudes in the two arms of
the MZI, the effects of QPCs A and B are described by the

scattering matrices SA ¼ ðrAtA
−t�A
rA
Þ and SB ¼ ð rBtBe−iχ

−t�Be
iχ

rB
Þ,

respectively. Here tA (tB) is the amplitude for an electron
incoming from arm 1 to be transmitted to arm 2,

rAðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jtAðBÞj2

q
, and χ ¼ ðωΔl=vÞ þ 2πðΦ=Φ0Þ is

the sum of the orbital and magnetic phase differences
between electrons traversing the upper and lower MZI’s
arms with a geometric mismatch Δl.
The electronic MZI is coupled, through electrostatic

interactions, to two detector QPCs (cf. QPC C and D in
Fig. 1). The electrons in the detectors are modeled in a
similar fashion to the electrons in the MZI. It is useful to
introduce the eigenmodes of QPC C:

φmnðx;ω; tÞ ¼
e−iωðt−

x
vÞffiffiffiffi

L
p

�
δmn ; x < xC
½SCðωÞ�mn ; x > xC

; ð2Þ

where m, n ¼ 3, 4. The eigenmodes of QPC D are defined
similarly, replacing C with D and setting m, n ¼ 5, 6. For
simplicity of notations, throughout we assume that QPCs C
and D are identical. Electrostatic interactions between
charges in the MZI arms and the detectors are modeled

assuming that the presence of charge in the respective MZI
arms slightly modifies the transmission probability of QPC
C or QPC D, with strength proportional to λ. The detectors
sense charge fluctuations over a segment of length l in the
respective interferometer arms. For simplicity, we assume
equal Fermi velocities v, and lengths L of all channels,
yielding the time of flight τFL ¼ L=v. The sources S1, S3,
and S5 are biased by voltage V relative to the other
grounded contacts.
Inspired by the weak value protocol, which singles out

quantum correlations via conditioning weak measurements
[11], we define a weak-weak-strong (WWS) value of the
current at the drain D1, conditioned on the weak detections
of charges at the upper and lower arms of the MZI (see
Supplemental Material [36]). The protocol relies on the
readout of zero-frequency cross-correlations and expect-
ation values of the currents at the drains D1, D3, and D5,
which we denote by ID1, ID3, and ID5. Thereby, the WWS
value is given by

hID1iWWS ≡ ⟪ID1⟫D3;D5 − ⟪ID1⟫D1;D1; ð3Þ

where ⟪ID1⟫D3;D5 ≡ hδID1δID3δID5i
hδID3δID5i , and ⟪ID1⟫D1;D1≡

hðδID1Þ3i=hðδID1Þ2i. Here δI ≡ I − hIi denotes the
fluctuations of the current around its average value hIi.
The expectation values represent the low-frequency compo-
nent of the signal and are obtained by averaging over a time
window τ, which we assume to be larger than all character-
istic timescales of the experiment (τ ≫ τFL;ℏ=eV). For
example, the three-current correlator is defined as

hδID1δID3δID5i

≡ lim
ω1→0
ω2→0

1

τ2

ZZ
τ=2

−τ=2
dt1dt2eiω1t1eiω2t2G135ðt1; t2Þ; ð4Þ

where G135ðt1; t2Þ≡ hδID1ð0ÞδID3ðt1ÞδID5ðt2Þi.
Single-particle analysis.—To lay out the concept, we first

analyze a simplified single-particle picture. Physically, this
corresponds to a dilute current scenario, where the distance
between consecutive electron wave packets is larger than
their spatial width [37].We also assume energy-independent
transmission amplitudes, i.e., Amnðx;ωÞ≡AmnðxÞ. In the
absence of the detectors, the current at drainDm,m ¼ 1, 2,
which originates from a voltage biased source Sn, n ¼ 1, 2
is obtained via the Landauer-Büttiker formalism
[38,39], hIDmi ¼ ðe2V=hÞjAmnðxDmÞj2. Employing the
definition of Amn [introduced in Eq. (1)], the current can
be expressed in terms of the scattering matrices
SA, SB as hIDmi ¼ hSnjIDmjSni, where IDm ¼
ðe2V=hÞS†

AS
†
BPDmSBSA. Here PDm ¼ jDmihDmj and

jSni, jDmi are vector states (cf. the definition of SA and
SB) corresponding to the electron at source Sn and drain
Dm, respectively (e.g., jS1i ¼ jD1i ¼ ð 1 0 ÞT).

FIG. 1. A detection setup. An MZI electrostatically coupled to
two QPCs C and D serving as which-path detectors. The
transmission through QPC CðDÞ is slightly modified (with a
strength proportional to λ) upon the detection of a charge
fluctuation in the respective MZI’s arm, within a segment l.
The currents are measured in the drainsD1,D3, andD5. Sector II
of the MZI is threaded with a magnetic flux Φ.
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We unfold our Hilbert space in the system (MZI-
detectors product space). Specifically, we consider the
propagation of a wave packet incident from the source
S1, along with electrons in S3 and S5. The incident state is
thus jΨi ¼ jS1; S3; S5i. The interaction between the sys-
tem and the upper detector is described by the scattering
matrix of the QPC C, SC ¼ ðř†ť −ť†

ř ÞC, where the subscript C
in the definition of SC indicates that the matrix is defined in
the subspace of QPC C. The elements of SC (ř and ť) are
matrices acting in the subspace of the MZI, representing
the dependence of the transmission amplitude of QPC C
on the position of a wave packet in the MZI. Here,
ť ¼ t0 · 1MZI þ λPC, where t0 is the transmission of an
isolated detector, 1MZI is the unity matrix in the MZI
subspace, and PC ¼ ð1

0
0
0
ÞMZI is the projector to the upper

MZI’s arm. The small parameter λ controls the strength
of the weak system-detector coupling. The matrix ř is
a diagonal matrix in the subspace of MZI satisfying
ř†řþ ť† ť ¼ 1MZI. Note that each element of SC is a 2 ×
2 matrix in the Hilbert subspace of the MZI’s arms so that
SC describes both the effect of the system on the detector
signal and the backaction onto the system.
Similar considerations apply for the coupling of the

system and the lower detector, via charge-sensitive trans-
mission of QPC D, replacing the index C with D, and
employing PD ¼ ð0

0
0
1
ÞMZI. Analogously to the current at

D1, the currents at D3 and D5 are defined by the expect-
ation values of the matrices ID3 ¼ ðe2V=hÞS†

CPD3SC, and
ID5 ¼ ðe2V=hÞS†

DPD5SD on the injected state jΨi, with
PDm projectors on the arm Dm.
We are now in a position to evaluate the WWS value of

Eq. (3) within the single-particle framework, hID1iSPWWS. To
compute this quantity we need the three-current correlator
of Eq. (3), which requires the ordering of the scattering
matrices and the projectors along the wavelets’ paths; these
act from the sources S1; S3; S5 towards the drains
D1; D3; D5 and backwards,

hID1ID3ID5i

¼
�
e2V
h

�
3

hΨjS†
AS

†
CS

†
DS

†
BPD1PD3PD5SBSDSCSAjΨi:

ð5Þ

Likewise, in order to obtain an explicit form of
hID1iSPWWS we need to compute the correlators hID3ID5i,
hðID1Þ3i, hðID1Þ2i and expectation values of currents
in terms of the scattering matrices SB, SD, SC, SA
expanded to the leading order in λ, and substitute
in Eq. (3). The expression can be simplified considerably
assuming t0 and λ to be real [36], leading to the lowest
order in λ to

hID1iSPWWS ¼ −
h½½ID1; QC�; QD�i

4hQCihQDi
: ð6Þ

Here QCðDÞ ¼ ðe2V=hÞðl=vÞS†
APCðDÞSA is an operator

measuring the charge sensed by the upper (lower) detector.
Note that the expression in Eq. (6) is constant in λ by
construction, as the numerator and the denominator in the
definition of ⟪ID1⟫D3;D5 [see below Eq. (3)] are of the
same leading order in λ. We employ the explicit expressions
of the charge and current operators to rewrite Eq. (6) as

hID1iSPWWS ¼ −
e2V
h

RefeiχtAt�BrArBg
2jtArAj2

: ð7Þ

Many-particle analysis.—The above single-particle
analysis can be generalized to include a scenario where
many particles are present and detected in the interferom-
eter’s arms. Throughout the following, we still discard
electron-electron interaction within the MZI and within the
detectors, yet account for the detection process (comprising
interaction between a detector’s electron and a MZI
electron). The most important facet we want to include
by accounting for such many-particle physics is that signals
detected by the detectors and at the MZI drains may refer to
different electrons (as opposed to partial waves of the same
injected electron). Our formalism needs to rid of such
spurious contributions. Departing from a single-particle
framework, we replace the Landauer-Büttiker approach by
full-fledged time-dependent operator averages in Eq. (3),
evaluated within the Keldysh formalism. The three-current
correlator (computed in the interaction picture, with the
MZI and the detectors being uncoupled) reads

hÎD1ð0ÞÎD3ðt1ÞÎD5ðt2Þi
¼ hT Ke

−ði=ℏÞ
H

ĤMDðt0Þdt0 ÎD1ð0ÞÎD3ðt1ÞÎD5ðt2Þi: ð8Þ

Here T K is the time-ordering operation (along the
Keldysh time contour) acting on the Keldysh-symmetrized
current operators in the interaction picture, ÎDmðtÞ ¼
Û†

0ðtÞÎDmð0ÞÛ0ðtÞ, m ¼ 1, 3, 5, where Û0ðtÞ is the
evolution operator with respect to the Hamiltonian of
uncoupled MZI and detectors.
Quantum and thermal averaging is performed with

respect to the density matrix ϱ̂ð−∞Þ, describing the state
of the impinging electrons [emitted from the (possibly
finite temperature) voltage biased reservoir], and the
decoupled detectors C and D: ϱ̂ð−∞Þ ¼ ϱ̂MZIð−∞Þ ⊗
ϱ̂QPCCð−∞Þ ⊗ ϱ̂QPCDð−∞Þ. The density matrix of the
isolated MZI is expressed as

ϱ̂MZIð−∞Þ ¼
Y
n;ω

½fnðωÞĉ†nðωÞĉnðωÞ þ f̄nðωÞĉnðωÞĉ†nðωÞ�;

ð9Þ
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where ĉ†nðωÞ, n ¼ 1, 2 is an operator creating an
electron in the state ψmnðx;ω; tÞ [Eq. (1)], fnðωÞ ¼
ð1þ eðℏω−μnÞ=kBTÞ−1 is the Fermi distribution of the elec-
trons injected at Sn, where T and μn are, respectively, the
temperature and the chemical potential of the lead Sn, and
f̄nðωÞ≡ 1 − fnðωÞ. The density matrices of the detectors
have analogous expressions with c†nðωÞ, n ¼ 3, 4, 5, 6
defined through Eq. (2).
The current operator near D1 at time t reads ÎD1ðtÞ ¼

vρ̂1ðxD1; tÞ, where the density operator ρ̂mðx; tÞ ¼
ψ̂†
mðx; tÞψ̂mðx; tÞ and ψ̂†

mðx; tÞ ¼ ðτFL=2πÞ
R
dωψmn ×

ðx;ω; tÞĉ†nðωÞ is an operator creating an electron in the
mth arm, at the position x and time t. Throughout, we
implicitly sum over repeated indices. In order to express
Eq. (4) in the frequency domain, and given the time
averaging in Eq. (4), all operators therein should be
evaluated at the same frequency, ω. Coherent superposi-
tions of different frequency components can then be
ignored, which allows us to use ρ̂mðx; tÞ ¼ ðτFL=2πÞ×R
dω½ρmðx;ω; tÞ�nlĉ†nðωÞĉlðωÞ, where ½ρmðx;ω; tÞ�nl ¼

eψmnðx;ω; tÞψ�
mlðx;ω; tÞ. In turn, we are able to express

the current operator as

ÎD1ðtÞ ¼
h
eV

Z
dω
2π

½ID1ðωÞ�mnĉ
†
mðωÞĉnðωÞ: ð10Þ

Analogous expressions hold for the detectors’ currents
ÎD3ðtÞ, ÎD5ðtÞ. The matrices IDmðωÞ are frequency-depen-
dent generalizations of the matrices IDm appearing in the
single-particle expressions, e.g., Eq. (5).
The coupling between the MZI and the detectors is

expressed through the Hamiltonian

ĤMDðtÞ ¼
ℏ
e2

ðλ̃Γ̂CðtÞQ̂CðtÞ þ λ̃Γ̂DðtÞQ̂DðtÞÞ: ð11Þ

Here the charge and tunneling current operators are
Q̂CðtÞ ¼

R
x∈l dxρ̂1ðx; tÞ, and Γ̂CðtÞ¼ðτFL=2πÞ

R
dω×

½Γ̃Cðω;tÞ�mnĉ
†
mðωÞĉnðωÞ, respectively, where ½Γ̃Cðω;tÞ�mn¼

ievφ3mðx−C;ω;tÞφ�
4nðxþC;ω;tÞþH:c: Analogous expressions

hold for Q̂DðtÞ and Γ̂DðtÞ, upon changing C ↔ D and the
respective channel indices.
We evaluate the correlator in Eq. (8) to leading order in λ̃

employing Eqs. (9)–(11). Similarly, we compute the other
correlators in Eq. (3). To obtain the WWS value in the
many-body picture, hID1iMB

WWS, we average the correlators
over time according to Eq. (4) [36]. The results are
presented in Fig. 2 as a function of the interference control
phase, χ.
In the low-temperature regime, eV ≫ kBT, we find

hID1iMB
WWSjeV≫kBT ¼ h

τjeVj hID1iSPWWS. The right-hand side

represents the single-particle result weighted with the
statistical probability of having a correlated noise, given

that τejVj=h independent particles are injected during the
measurement time, τ. In the opposite, high-temperature
limit, the signal converges to hID1iMB

WWSjeV≪kBT ¼
−ð2hkBT=jeVj2ÞhID1iSPWWS, with a prefactor reflecting
the thermal noise and a reversed overall sign. The sign
reversal arises from the change of the relative strengths of
the two terms contributing to the WWS signal in Eq. (3),
following the analysis of the decoupled two- and three-
point correlation functions [36]. In both of these limits,
hID1iMB

WWS oscillates around zero when varying χ, but the
oscillatory pattern changes nontrivially in the crossover
from low to high temperature due to many-body (thermal
noise) effects.
Quantum vs classical interference.—As demonstrated in

Fig. 2, the three-point correlation function studied here
assumes nonvanishing values for generic parameters of the
interference setup. In fact, a nonzero value of hID1iWWS is a
direct signature of the quantum nature of the interference
process. In order to confirm this we show that our three-
point correlator [Eq. (3)] vanishes identically for two
distinct classical scenarios: interference of classical waves,
and (probabilistic, noninterfering) passage of classical
particles through the interferometer arms. In both cases
classical beam splitters replace the roles of the QPCs.
Consider first the case of classical particles. A particle

emitted from S1 is scattered with probability jtAj2 onto
arm 2 and remains on the same arm with probability
jrAj2 ¼ 1 − jtAj2. The noisy detectors have the probability
jt0j2 to click in the absence and probability jt0j2 þ λc to
click in the presence of a particle in the upper (lower) arm.
To simplify the algebra, we set the rate of electrons injected

FIG. 2. The WWS value, hID1iMB
WWS as function of the phase

difference between the two arms, χ, with transmission amplitudes
tA ¼ ffiffiffiffiffiffiffiffiffi

0.55
p

and tB ¼ ffiffiffiffiffiffi
0.5

p
, for several values of eV=kBT. The

WWS value oscillates around zero when varying χ. In the two
limiting cases, eV=kBT ≫ 1 and eV=kBT ≪ 1, the WWS value
is proportional to hID1iSPWWS [Eq. (7)], albeit with different
proportionality coefficients. The latter reflect the temperature
dependence of the two- and three-point correlation functions [see
Eq. (S20) in the Supplemental Material [36] ].
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at the detectors equal to the rateW of electrons impinging at
the beam splitter A. We further assume that W is small
enough to have at most one particle in the segment between
the beam splitters A and B at any instance of time.
The current correlations in this model can be determined

following the same formalism outlined above (for the
single-particle case), but replacing the coherent state jψi
with a diagonal density matrix describing the probabilities
of the classical particle to be in the respective inter-
ferometer arms. For the three-point correlator we obtain
hδID1δID3δID5i ¼ −λ2cI3

0jtAj2jrAj2ð1 − 2IÞ, where I ≡
jtAj2jtBj2 þ jrAj2jrBj2 and I0 ≡ eW. The remaining
two-point and self-correlators read hδID3δID5i ¼
−λ2cI2

0jtAj2jrAj2, hðδID1Þ3i ¼ I3
0Ið1 − IÞð1 − 2IÞ, and

hðδID1Þ2i¼I2
0Ið1−IÞ. Finally, we obtain ⟪ID1⟫D1;D1 ¼

⟪ID1⟫D3;D5, which, by Eq. (3), yields zero signal.
To establish a benchmark for classical waves, we

consider a charge wave packet injected at S1 which,
following the splitting at QPC A, propagates in the two
arms j ¼ 1, 2. The amplitude of the charge in arm 1,QCðtÞ,
is sensed by the corresponding detector, QPC C (cf. Fig. 1)
via the detector’s signal ID3ðtÞ ∝ jt0j2 þ λcðl=vÞ×
QCðt − τCÞ=eþ ξ3ðtÞ, where τC is the time of flight from
S1 to the point where the charge is detected and ξ3ðtÞ is a
stochastic noise at the detector. A similar expression holds
for the detector’s signal ID5ðtÞ sensing the charge QD in
arm 2 of the interferometer with an added noise ξ5ðtÞ.
Importantly, there is no backaction here, hence the ampli-
tudes QCðtÞ and QDðtÞ are unaffected by the measurement
outcome (by the detectors’ noise). As a result, if we assume
that the wave injected at S1 has a stochastic component
ξ1ðtÞ, the noise of the signal in D1 is unaffected by ξ3ðtÞ
and ξ5ðtÞ. Employing the fact that hξiðtÞξjðt0Þi ∝ δi;j, it
follows that hID1iWWS ¼ 0, reflecting the classical nature
(no backaction) of this interferometry.
Conclusions.—We have constructed a protocol capable

of addressing the “quantumness” of interference. The
detection signal is nonzero in the case of quantum inter-
ference and vanishes for classical waves and for classical
particles. Measurement of such a nonzero outcome above
the noise level is an indication of an underlying quantum
interference in the system.We have addressed both the limit
of (at most) a single particle present at the interferometer at
any given moment, as well as the limit of many particles
present. Our protocol does not require to register a signal as
a function of an externally varied parameter (e.g., the phase
difference between the two arms).
Experimentally, to obtain the quantity represented by

Eq. (3), four different measurements are required: the three-
current cross-correlation of the currents in D1, D3, and D5
[cf. Eq. (5)], the two-current cross-correlation of the two
detectors, and the two- and three- self-correlation functions
of the current in two electronic beam splitters (QPC C
and D). Note that for the electronic case both the interfer-
ometer and the QPCs operate in the quantum Hall regime,

cf. Fig. 1. Given recent experimental advances in the
field, we believe that our protocol can be implemented
and verified in experiment. Furthermore, an intriguing
follow up, both theory-wise and experiment-wise, would
be the generalization of the above protocol to anyonic
interferometry.
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