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We introduce a complex-extended continuum level density and apply it to one-dimensional scattering
problems involving tunneling through finite-range potentials. We show that the real part of the density is
proportional to a real “time shift” of the transmitted particle, while the imaginary part reflects the imaginary
time of an instantonlike tunneling trajectory. We confirm these assumptions for several potentials using the
complex scaling method. In particular, we show that stationary points of the potentials give rise to specific
singularities of both real and imaginary densities which represent close analogues of excited-state quantum
phase transitions in bound systems.
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The density of discrete energy spectra of bound quantum
systems forms a bridge between classical and quantum
mechanics [1–3]. While the oscillatory component of the
level density is related to classical periodic orbits, the smooth
component is determined by the size of the accessible phase
space at given energy E. Nonanalyticities of the phase-space
volume function lead to singularities of quantal spectra
known as the excited-state quantum phase transitions
(ESQPTs), see, e.g., Refs. [4–20]. In particular, for one-
dimensional (1D) systems, these singularities express
anomalous time relations caused by discontinuous or diver-
gent periods of classical orbits.
The question addressed in this Letter is whether the

densities of continuum energy eigenstates in unbound
systems allow for similar semiclassical interpretations
and show analogous ESQPT effects. This concerns funda-
mental scattering and tunneling processes that include
molecules, atoms, nuclei, and elementary particles. Time
relations in such processes and their semiclassical founda-
tions are vividly discussed topics [21–26], which with the
recent advent of the attosecond metrology have become
available to experimental study, see, e.g., Refs. [27–30].
We focus on 1D scattering problems involving resonant

tunneling in multibarrier potentials [31]. Quantum tunnel-
ing, in general, with its possible role in the evolution of the
early Universe [32] and indisputable impact on modern
technologies [33], is thought to be a genuinely quantum
phenomenon with no classical counterpart. However, its
analogs have been searched in terms of a complex
generalization of classical mechanics [34–38]. Our present
Letter brings new arguments supporting these efforts. We
find that a suitable complexly defined continuum level
density reflects complex times deduced from generalized
semiclassical dynamics involving instantonlike solutions.

Moreover, we demonstrate that real and imaginary com-
ponents of the continuum level density show ESQPT-like
singularities associated with classical stationary points of
potentials VðxÞ and −VðxÞ applied, respectively, in the
allowed and forbidden regions.
Let Ĥ and Ĥð0Þ be Hamiltonians with continuous energy

spectra describing an unbound quantum system with and
without interaction, respectively. The continuum level
density used in the corresponding scattering problems
has been defined [39,40] as

δρðEÞ ¼ −
1

π
lim
ϵ→0

ImTr½ĜðEþ iϵÞ − Ĝð0ÞðEþ iϵÞ�; ð1Þ

where ĜðEÞ ¼ 1=ðE − ĤÞ and Ĝð0Þ ¼ 1=ðE − Ĥð0ÞÞ are
Green operators associated with Ĥ and Ĥð0Þ. Our present
approach differs from this in two points: (i) we assume that
both Hamiltonians have discrete sets of complex eigenval-
ues and (ii) we introduce the continuum level density
ΔρðEÞ as a complex function in the complex energy domain
E ¼ E − ði=2ÞΓ. Point (i) is realized by application of the
so-called complex scaling method in combination with a
finite-box approximation [41–46]. The method makes use
of a similarity transformation with a nonunitary operator Ŝ,
which maps the original Hamiltonians to equivalent non-

Hermitian images ĤNH ¼ Ŝ Ĥ Ŝ−1 and Ĥð0Þ
NH ¼ ŜĤð0ÞŜ−1.

For a finite box size, these images have discrete sets of

complex eigenvalues Ek ¼ Ek − ði=2ÞΓk and Eð0Þ
k ¼ Eð0Þ

k −
ði=2ÞΓð0Þ

k with integer index k. As discussed below, some of
these states can be interpreted as resonance states with real
energies Ek and widths Γk ≥ 0. Generalization (ii) is
achieved by defining the continuum level density as
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ΔρðEÞ ¼ i
π
Tr

1

E − ĤNH
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ρðEÞ

−
i
π
Tr

1

E − Ĥð0Þ
NH

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ρð0ÞðEÞ

; ð2Þ

where the traces are evaluated as sums over all discrete

eigenvectors, whose energies Ek and E
ð0Þ
k represent poles of

ΔρðEÞ. In the infinite-box limit, the real part of Eq. (2)
on the real energy axis, ReΔρðE − i0Þ≡ ReΔρðEÞ ¼
ReρðEÞ − Reρð0ÞðEÞ, has to coincide with density (1).
The meaning of ImΔρðEÞ is discussed below.
Let us briefly overview properties of the density (2).

From the residue theorem we see that a contour integral of
ΔρðEÞ along a closed loop in the complex plane E gives
twice the difference between the number of eigenvalues of

ĤNH and Ĥð0Þ
NH inside the loop. We expect that Ek ≈ Eð0Þ

k for
E much larger than the energy range of interaction
V̂ ¼ Ĥ − Ĥð0Þ, so contributions of these eigenstates to
Eq. (2) approximately cancel out. The essential part of
ΔρðEÞ therefore comes from a finite number (in the finite-
box approximation) of eigenstates at smaller energies E.
The ρðEÞ term in Eq. (2) reads

ReρðEÞ ¼ 1

π

X

k

− 1
2
ðΓ − ΓkÞ

ðE − EkÞ2 þ 1
4
ðΓ − ΓkÞ2

; ð3Þ

ImρðEÞ ¼ 1

π

X

k

E − Ek

ðE − EkÞ2 þ 1
4
ðΓ − ΓkÞ2

; ð4Þ

and the ρð0ÞðEÞ term is expressed analogously. Below we
will analyze ΔρðEÞ on the real energy axis, i.e., for
Γ ¼ 0. The real part of ρðEÞ represents a generalization
of the level density ϱðEÞ ¼ P

k δðE − EkÞ of a bound
system with discrete energies Ek to the smooth form
ReρðEÞ ¼ P

k δΓk
ðE − EkÞ, where δΓðΔEÞ ¼ ð1=2πÞΓ=

ðΔE2 þ 1
4
Γ2Þ is a normalized Breit-Wigner peak (Cauchy

distribution) with the maximum at ΔE ¼ 0 and the full
width at half-maximum Γ. An analogous expression applies
to Reρð0ÞðEÞ, so ReΔρðEÞ consists of positive and negative
peaks centered at energies Ek and Eð0Þ

k , respectively. If the
widths Γk are close to zero, an additional smoothening may
be needed to get rid of sharp local structures and reveal a
robust energy dependence of the level density. This can be
achieved by adding a small positive imaginary component
iϵ to energy E, i.e., by setting Γ ¼ −2ϵ in Eqs. (3), (4) and
their ρð0ÞðEÞ analogs. Hence we introduce smoothed
level densities ρðEþ iϵÞ≡ ρ̄ðEÞ, ρð0ÞðEþ iϵÞ≡ ρ̄ð0ÞðEÞ,
and Δρ̄ðEÞ ¼ ρ̄ðEÞ − ρ̄ð0ÞðEÞ.
The complex level density (2) will be investigated in 1D

scattering problems. Hamiltonians of these problems have
the standard forms, Ĥð0Þ ¼ p̂2=2m and Ĥ ¼ Ĥð0Þ þ V̂ðxÞ,
where p̂ ¼ −iℏð∂=∂xÞ stands for the momentum operator,
m for the particle mass, and V̂ðxÞ is a potential. We assume

that V̂ðxÞ ≈ 0 outside a certain finite interval ðxL; xRÞ. The
usual asymptotics of wave functions is required, namely

ψðxÞ ¼
�

eþði=ℏÞpx þ RðEÞe−ði=ℏÞpx for x < xL;

TðEÞeþði=ℏÞpx for x > xR;
ð5Þ

where p ¼ ffiffiffiffiffiffiffiffiffiffi

2mE
p

, and RðEÞ and TðEÞ stand for reflection
and transmission amplitudes, respectively. The transmis-
sion amplitude is written as

TðEÞ ¼ jTðEÞjeiϕðEÞ ¼ ei½ϕðEÞ−i ln jTðEÞj� ≡ eiΦðEÞ; ð6Þ

where ϕðEÞ is a real phase shift of the transmitted wave and
ΦðEÞ is a complex phase.
It is known that the real continuum level density (1)

expresses the change of the real phase shift ϕðEÞ with
energy [39]. In analogy, we write

ΔρðEÞ ¼ 1

π

d
dE

ΦðEÞ ¼ 1

π

d
dE

ϕðEÞ − i
π

d
dE

ln jTðEÞj: ð7Þ

This implies that the “observable” functions ϕðEÞ and
jTðEÞj can be obtained by integration of ReΔρðEÞ and
ImΔρðEÞ, respectively. So the real and imaginary parts of
the continuum level density jointly contain complete
information on the transmission amplitude, and both are
in principle accessible to experimental study. Using
Δρ̄ðEÞ≡ ΔρðEþ iϵÞ instead of ΔρðEÞ, one obtains a
smoothed complex phase Φ̄ðEÞ≡ ϕ̄ðEÞ − i ln jT̄ðEÞj.
Phase shifts of wave functions in scattering problems are

related to some suitably defined “time delays” [21–26].
For example, the so-called Eisenbud-Wigner time [21] is
given as Δt ¼ ℏðd=dEÞϕ, which near the center of a single
resonance yields a delay Δt ∝ ℏ=Γk proportional to the
average lifetime, whereas far from the resonances Δt ≈ 0
[25]. To avoid sharp changes of the time delay, we calculate
it from the smoothed phases. The complex phase Φ̄ðEÞ
results in the complex time shift

ΔT ðEÞ≡ ℏ
d
dE

Φ̄ðEÞ: ð8Þ

The meaning of real and imaginary components of ΔT ðEÞ
follows from semiclassical considerations. Indeed, the
transmitted wave at x ¼ xR is approximated by

T̄ðEÞeði=ℏÞpxR ¼ eði=ℏÞpxLe
ði=ℏÞ

h
R

xR
xL

dx0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m½E−Vðx0Þ�
p

þC

i

; ð9Þ
where constant C includes phase shifts between allowed
and forbidden regions [47]. From Eq. (8) we obtain

ReΔT ðEÞ ¼
Z

E≥VðxÞ
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2½E − Vðx0Þ�

r

−
ffiffiffiffiffiffi

m
2E

r

ðxR − xLÞ;

ð10Þ
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ImΔT ðEÞ ¼
Z

E<VðxÞ
dx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
2½Vðx0Þ − E�

r

: ð11Þ

The integral in Eq. (10) is taken across all classically
allowed (for given E) regions between xL and xR and
represents the time that a classical particle needs to pass
these regions. The subtracted term is the transmission time
of a free particle. On the other hand, the integral in Eq. (11),
taken across all classically forbidden regions, is related to
complex-time solutions of the classical equations of
motions inside the potential barriers.
The use of complex time in the description of tunneling

processes within the framework of the path integral was
initiated by McLaughlin [34] and later developed, e.g., in
Refs. [2,35–38]. In particular, the well-known instanton
solution [35] applies theWick rotation t → −it to derive the
semiclassical tunneling probability. This approach was
generalized to multibarrier tunneling, for which a notrivial
evolution of time T in the complex plane was considered
[38]. In these problems, the continuous path T ðsÞ, char-
acterized by a linearly increasing real parameter s, has a
shape of a descending staircase, whose segments corre-
sponding to motion in classically allowed regions are
parallel with the real time axis, ðd=dsÞT ¼ 1, while the
segments associated with tunneling through forbidden
regions go vertically along the negative imaginary axis,
ðd=dsÞT ¼ −i. Complex-extended Hamilton equations
render the momentum switching between pure real and
imaginary values at classical turning points between allowed
and forbidden regions, while the coordinate evolves solely
in the real domain. The evolution in forbidden regions is
equivalent to the motion with energy −E in an inverted
potential −VðxÞ.
These considerations lead to a semiclassical expression

of the continuum level density in 1D scattering. Combining
Eqs. (7) and (8), we get the formula

Δρ̄ðEÞ ¼ 1

πℏ
ΔT ðEÞ; ð12Þ

which together with Eqs. (10) and (11) represents a
semiclassical estimate of both real and imaginary parts
of the smoothed density. The real and imaginary parts of the
time shift ΔT ðEÞ correspond to real and imaginary times
accumulated in the above-described staircase evolution of
T ðsÞ, the real part being reduced by subtracting the passage
time of a free particle. We note an apparent similarity of
Eq. (12) with the relation ϱ̄ðEÞ ¼ t∘ðEÞ=2πℏ between the
smoothed level density of a bound system and the period t∘
of classical orbits at energy E. The denominators in these
formulas differ by a factor of 2 because the time shift
ΔT ðEÞ includes only a half of the return trajectory.
Therefore, the scattering and bound systems rely upon
rather similar semiclassical descriptions, in which the

scattering systems with continuous energy require the
use of complex instead of real quantities.
We test Eq. (12) in 1D scattering systems with several

sample potentials (see Fig. 1) using the complex scaling
method [41–46]. It is based on a similarity transformation
Ŝ ¼ eiθ=2e−θ x̂ p̂ =ℏ with parameter θ ∈ ð0; π=4Þ which maps
the coordinate and momentum operators to eiθx̂ and e−iθp̂.
This turns resonant solutions ψkðxÞ associated with poles of
the scattering matrix at complex momenta pk ¼ jpkje−iαk
with αk ∈ ð0; θÞ into square-integrable eigenstates of the
transformed Hamiltonian ĤNH. The results of the complex
scaling method for Hamiltonians with potentials from
Fig. 1 are shown in Fig. 2. For a fixed θ, only the

-10 0 10

0

1

-10 0 10-10 0 10

(a) (b) (c)

FIG. 1. Potentials of the form (13) with ða; b; c; ηÞ set to
(a) ð1; 0; 0; 1

10
Þ, (b) ð1; 0; 1

10
; 1
10
Þ, and (c) ð0.346;−0.173;

0.173; 1
10
Þ. Dashed lines mark quadratic [in panels (a) and (c)]

and quartic [in panel (b)] stationary points.

0 1

0

1

0 1
0

2
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0 1
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(c)
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FIG. 2. Resonances and background states calculated by the
complex scaling method for potentials from the respective panels
of Fig. 1. Red dots are complex eigenvalues of ĤNH, blue dots

those of Ĥð0Þ
NH. Vertical lines mark energies of stationary points.

Parameters ðℏ= ffiffiffiffi

m
p

; θÞ are (0.1,0.5) in panels (a) and (b), and
(0.058,0.25) in (c). The box size is L ¼ 500, for diagonalization
we use 1.5 × 104 basis box functions.
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resonances with complex energies Ek ¼ jEkje−iβk satisfy-
ing βk ∈ ð0; 2θÞ emerge (red dots below the diagonal),
while those with βk ≥ 2θ form background states (in the
infinite-size limit forming so-called rotated continuum)
along the line 1

2
Γ=E ¼ tan 2θ (red dots along the diagonal).

Resonances with larger βk can be found if θ is further
increased, but this is numerically demanding and not
essential here. The effect of undisclosed resonances on
the level density is included in the contribution of the
background states for a given θ. Moreover, the complex
scaling transformation performed on Ĥð0Þ yields only the
background states (blue dots along the diagonal), and for
large enough E the background contributions in ReρðEÞ
and Reρð0ÞðEÞ approximately cancel each other [45]. So
ReΔρðEÞ is mostly formed by resonances not too far from
the real axis, and the same holds for ImΔρðEÞ. Close to
E ¼ 0, both background contributions combine in a non-
trivial way.
The potentials employed here have a general form

VðxÞ ¼ ðaþ bxþ cx2Þe−ηx2 ; ð13Þ

where a, b, c, and η are adjustable parameters. We choose
only three testing examples shown in Fig. 1. Calculations
are performed with some optimized values of the classi-
cality parameter ℏ=

ffiffiffiffi

m
p

and angle θ (see the caption of
Fig. 2). For the sake of simplicity all quantities are taken
dimensionless. In the finite-box approximation, we assume
that VðxÞ ¼ ∞ for jxj > 1

2
L. The finite length L makes the

set of background states discrete, but its value is chosen
large enough to keep this set dense and to yield the
resonances at βk < 2θ stabilized (invariant under an
increase of L). Though the potentials (13) are not restricted
to any finite support interval, they decrease exponentially
with increasing jxj. This means that xL and xR in Eqs. (9)
and (10) can be chosen almost arbitrarily. In the following
calculations we set −xL ¼ 1

2
L ¼ þxR.

Figure 3 demonstrates the main result of this Letter. It
compares the real and imaginary parts of the smoothed
continuum level density Δρ̄ðEÞ with the real and imaginary
parts of the time shift ΔT ðEÞ from Eqs. (10) and (11). Note
that the described method for the evaluation of Δρ̄ðEÞ fails
close to E ¼ 0, so the low-energy region is excluded.
Results in Figs. 3(a)–3(c) refer to the potentials in the
corresponding panels of Fig. 1.
In accord with formula (12), we observe a satisfactory

match of the Δρ̄ðEÞ and ΔT ðEÞ curves in Fig. 3. The
agreement is expected to further improve with decreasing
parameters ℏ=

ffiffiffiffi

m
p

(more resonances) and ϵ (less smooth-
ening). The match is very good in panels (a) and (b), and
less good in panel (c), where the density curves are more
smoothed as the corresponding potential gives a larger
oscillatory component of ΔρðEÞ. In any case, the density
and time curves in all panels of Fig. 3 show the same

qualitative features, particularly the step-, peak-, and dip-
like singularities at the energies associated with stationary
points of the respective potentials. These singularities
reflect the fact that classical stationary points inside the
interaction region induce anomalous changes of the com-
plex time shifts. As follows from the previous discussion,
the singularities in ReΔT ðEÞ are connected with stationary
points of VðxÞ, while those in ImΔT ðEÞ refer to stationary
points in −VðxÞ.
Effects of the stationary points on the time shifts in Fig. 3

can be classified as follows. (i) A quadratic maximum of
the potential at an energy E0 leads to a logarithmic
divergence ∝ − ln jE − E0j of the time shift [7]. This
concerns the maximum of VðxÞ in Fig. 1(a), and the two
maxima of VðxÞ and one maximum of −VðxÞ in Fig. 1(c).
So in Fig. 3(a) we observe one divergence in ReΔT ðEÞ,
while in Fig. 3(c) we get two divergences in ReΔT ðEÞ and
one in −ImΔT ðEÞ. Note that if the singularity appears in
imaginary time, it is inverted in both time and energy
directions since in the forbidden regions we do trans-
formation E → −E and let time pass in the −i direction.
(ii) A quadratic minimum of the potential at E ¼ E0

produces a steplike dependence ∝ ΘðE − E0Þ of the time
shift (where Θ is a step function equal to 0 for negative
arguments and to 1 otherwise) [7]. This is the case of all
structures in Fig. 1 mentioned in item (i), but in the inverse
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FIG. 3. A test of formula (12). Each panel shows the smoothed
continuum level density (full curves) and the time shift (dashed
curves) on the real energy axis for the potential in the respective
panel of Fig. 1. The real and imaginary parts are drawn by blue
and red curves, respectively. Vertical lines mark energies of
stationary points. Parameters of the calculation are the same as in
Fig. 2, the smoothening parameter ϵ is 0.001 in panels (a) and (b),
and 0.050 in (c).
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sense. So in Fig. 3(a) we have one step singularity of
−ImΔT ðEÞ, and in Fig. 3(c) two step singularities of
−ImΔT ðEÞ and one of ReΔT ðEÞ. (iii) A degenerate
(higher than quadratic) extreme of the potential causes
divergent time shifts in both minimum and maximum cases
[7]. This concerns the flat potential in Fig. 1(b). A quartic
maximum of VðxÞ at E0 leads to a power-law divergence
ReΔT ðEÞ ∝ jE − E0j−1=4. The corresponding quartic min-
imum of −VðxÞ gives rise to the dependence −ImΔT ðEÞ ∝
ΘðE0 − EÞjE − E0j−1=4.
All the above singularities are reproduced in Fig. 3 by the

curves ReΔT ðEÞ and ImΔT ðEÞ, and their correlates are
seen in the associated curves ReΔρ̄ðEÞ and ImΔρ̄ðEÞ. We
know that singular energy dependencies of the level density
in bound quantum systems are connected with the ESQPTs,
which for systems with a single degree of freedom f
originate in nonanalytic variations of classical periods of
closed orbits [4–7]. The present analysis therefore general-
izes the concept of the f ¼ 1 ESQPT from bound to
scattering systems. It shows that, in the latter case, dual
ESQPT structures exist separately in both real and imagi-
nary parts of the level density. They are classified by
stationary points of the normal and inverted potential
applied in allowed and forbidden regions, respectively.
We point out that semiclassical calculations of tunneling
resonances—already revealing an anomaly connected with
the barriermaximum—were reported earlier inRefs. [48,49].
Our Letter extends these results to general stationary points
of any tunneling potential.
In summary, we have investigated the description of

1D scattering processes in terms of the continuum level
density. We have extended the existing definition of ΔρðEÞ
to the complex domain and related its real and imaginary
parts on the real energy axis to the real and imaginary time
shifts associated with complex tunneling trajectories.
Fundamental relations (7) and (12) have been proposed.
As a confirmation of our surmise, we have clearly identified
singularities of Δρ̄ðEÞ caused by classical stationary points
for several test potentials VðxÞ. In particular, the singular-
ities in ReΔρ̄ðEÞ reflect stationary points of VðxÞ in the
classically allowed regions, while the singularities in
ImΔρ̄ðEÞ reflect stationary points of −VðxÞ in classically
forbidden regions. These dual structures constitute a
remarkable generalization of ESQPTs to unbound systems
with f ¼ 1. We anticipate that these results extend to f > 1

systems in which the ESQPTs affect higher derivatives of
the level density [7,12]. In general, our findings highlight the
pertinence of instantonlike solutions of the tunneling prob-
lem and contribute to the evidence that classical mechanics
extended to the complex time domain provides valid semi-
classical counterparts of purely quantum processes.
Let us stress that current nanoscience allows us to realize

customized resonant tunneling potentials via fabricating
suitable nanostructures, see, e.g., Refs. [50–55]. So the

above ESQPT effects, translated through Eqs. (6) and (7) to
variations of the tunneling amplitude, are of direct practical
importance and open to experimental tests.
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