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Quantum spin liquids can be faithfully represented and efficiently characterized within the framework
of projected entangled pair states (PEPS). Guided by extensive exact diagonalization and density matrix
renormalization group calculations, we construct an optimized symmetric PEPS for a SUð3Þ1 chiral spin
liquid on the square lattice. Characteristic features are revealed by the entanglement spectrum (ES) on an
infinitely long cylinder. In all three Z3 sectors, the level counting of the linear dispersing modes is in full
agreement with SUð3Þ1 Wess-Zumino-Witten conformal field theory prediction. Special features in the
ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the
holographic bulk-edge correspondence. Possible universal properties of topological SUðNÞk chiral PEPS
are discussed.
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Introduction.—Quantum spin liquids are entangled
states of matter in interacting spin systems, supporting
fractionalized excitations [1–3]. In two dimension, among
the various classes [4], spin liquids with broken time-
reversal symmetry, i.e., chiral spin liquids (CSL) [5,6],
exhibit chiral topological order [7]. Intimately related to
fractional quantum Hall (FQH) states [8], CSL host both
anyonic quasiparticles in the bulk [9] and chiral gapless
modes on the edge [10]. It was early suggested that, in
systems with enhanced SUðNÞ symmetry, realizable with
alkaline-earth atoms loaded in optical lattices [11], CSL
can naturally appear [12]. Later on, many SUðNÞ1 CSL
with different N were identified on the triangular lattice
[13], while the original proposal on the square lattice [12]
remains controversial.
In recent years, projected entangled pair states (PEPS)

[14] have emerged as a powerful tool to study quantum spin
liquids. In addition to providing competitive variational
ground states [15,16], PEPS also offer a powerful frame-
work to encode topological order [17] and construct
nonchiral [18,19] and chiral—both Abelian [20,21] and
non-Abelian [22]—SU(2) spin liquids. Generically, SU(2)

CSL described by PEPS exhibit linearly dispersing chiral
branches in the entanglement spectrum (ES) well described
by Wess-Zumino-Witten (WZW) SUð2Þk (with k ¼ 1 for
Abelian CSL) conformal field theory (CFT) for one-
dimensional edges [23]. However, to our knowledge, there
is no known example of more general SUðNÞ PEPS with
unambiguous chiral edge modes. Thus, it remains unclear
whether symmetric PEPS can describe higher SUðNÞ CSL
faithfully. In order to address these issues, we propose and
investigate a frustrated SU(3) symmetric spin model on the
square lattice with a symmetric PEPS ansatz, thereby taking
the first step toward describing general SUðNÞk CSL with
PEPS.
Model and exact diagonalization.—On every site, we

place a three-dimensional spin degree of freedom, trans-
forming as the fundamental representation of SU(3) group.
The Hamiltonian, defined on a square lattice, includes
the most general SU(3)-symmetric short-range three-site
interaction:

H ¼ J1
X

hi;ji
Pij þ J2

X

hhk;lii
Pkl þ JR

X

△ijk

ðPijk þ P−1
ijkÞ

þ iJI
X

△ijk

ðPijk − P−1
ijkÞ; ð1Þ

where the first (second) term corresponds to two-site
permutations over all (next-)nearest neighbor bonds,
defined as Pijjαiijβij¼jβiijαij with jαi; jβi the local basis,
and the third and fourth terms are three-site (clockwise)
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permutations on all triangles of every plaquette. We have
chosen J2 ¼ J1=2 so that the two-body part on the
interacting triangular units becomes S3 symmetric, hence
mimicking a triangular lattice [24] and further parametrized
the amplitude of each term as J1 ¼ 2J2 ¼ 4

3
cos θ sinϕ,

JR ¼ cos θ cosϕ, and JI ¼ sin θ.
We have performed extensive exact diagonalization (ED)

calculations [25,26] on various periodic Ns-site clusters to
locate the CSL phase in parameter space. We expect (1) to
host a SUð3Þ1 CSL equivalent to the 221 Halperin FQH
state [27,28], whose spectral signatures on small tori can be
established precisely [29,30]. A careful scan in θ and ϕ
reveals a small region where, for Ns ¼ 3p ðp ∈ NþÞ, there
are three low-lying singlets below the octet gap, reflecting
the expected topological degeneracy of the CSL. For
Ns ≠ 3p, the low-energy quasidegenerate manifold reflects
perfectly the anyon content of the CSL. In both cases, the
momenta of low-energy states match the heuristic counting
rules of the 221 Halperin state with 0, 1, or 2 quasiholes
[30–33]. Also, a 4 × 4 cluster with open boundaries
reveals the expected CFT edge spectrum (see Fig. 1 and
Supplemental Material [34]). Hereafter, we focus on angles
θ ¼ ϕ ¼ π=4, for which clear evidence of a gapped CSL is
found [35,36].
Symmetric PEPS ansatz.—A symmetric PEPS represen-

tation of the CSL enables us to access not only local
properties (e.g., energy density) efficiently, but also topo-
logical properties from its entanglement structure [37,38].
This can be accomplished by using SU(3)-symmetric
tensors, analogously to the SU(2) case [39,40]. The
simplest virtual space available here is V ¼ 3 ⊕ 3̄ ⊕ 1
(with bond dimension D ¼ 7) such that (i) a symmetric
maximally entangled SU(3) singlet jΩi can be realized on
every bond by pairing two neighboring virtual particles
and (ii) four virtual particles around each site can be fused
into the three-dimensional physical spin with an onsite

projector P [41,42], see Fig. 2(a). In addition to the
continuous rotation symmetry, full account of the discrete
C4v point-group symmetry (shown as purple arrows in
Fig. 2(a)) is taken [40], and tensors are classified according
to the corresponding irreps. By linearly combining onsite
projectors of two different irreps with opposite �1 char-
acters with respect to axis reflections, one can construct a
complex PEPS ansatz breaking both parity (P) and time-
reversal (T) symmetries while preserving PT [20,22],
as required for a CSL ground state (for details, see the
Supplemental Material [34]). For later convenience, we
define the tensor A by absorbing adjacent singlets on the
right and down bonds around each site into the projector,
forming an equivalent way to express the wave function.
The fact that center of the SUðNÞ group is isomorphic to

the ZN group allows one to associate a Z3 charge Q ¼ þ1
to the physical space of tensor A, while the virtual space
carries Z3 charges Q ¼ fþ1;−1; 0g, i.e., it contains a
regular representation of Z3. Hence, the tensor A bears an
important Z3 gauge symmetry associated with local charge
conservation: ðZ ⊗ Z† ⊗ Z ⊗ Z†Þ∘A ¼ ωA, where the
action on virtual indices reads as left, right, up, and down,
and ω ¼ ei2π=3, Z ¼ diagðω;ω;ω;ω2;ω2;ω2; 1Þ is the
representation of the Z3 generator in V. This built-in gauge
symmetry is central to topological properties, such as
topological degeneracy on the torus and anyonic excitations
[17]. Note that the Z3 gauge symmetry naturally appears
from the physical SU(3) and point-group symmetries, and
is not a symmetry we imposed ad hoc.
Variational optimization.—The best variational ground

state is obtained by taking the ansatz P ¼ PN1

a¼1 λ
a
1B

a
1þ

i
PN2

b¼1 λ
b
2B

b
2 , where B

a
1 (B

b
2) transforms as B1 (B2) irrep of

(a) (b)

FIG. 1. ED spectra on periodic (a) 21- and (b) 20-site tori. Insets
show available momenta in reciprocal space. Dot, triangle, and
segment symbols correspond to singlets, 3̄, and other finite-
dimensional SU(3) irreducible representations (irreps), respectively.

(a)

(b)

FIG. 2. (a) Symmetric PEPS construction. (b) Comparison of
energy densities obtained by symmetric PEPS, DMRG, and ED,
plotted versus D2=χ, 2=Nv and 2=

ffiffiffiffiffiffi
Ns

p
, respectively. The PEPS

energy, optimized at χ ¼ D2, is further calculated with χ ¼
kD2ðk ¼ 2–6Þ and extrapolated to χ → ∞ (red circles). Blue
squares stand for DMRG data on finite-width cylinders (Nv ¼
3–6), keeping up to 4000 states. ED results on tori with Ns ¼ 12,
15, 18, 21, 24 sites and different geometries are indicated by stars.
Dotted (dash-dotted) line is an exponential fit of the DMRG (ED)
data to the thermodynamic limit.
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C4v, N1 (N2) is the number of linearly independent
projectors in B1 (B2) class, and optimizing the (few)
variational parameters fλa1; λb2g ∈ R with a conjugate-
gradient method [43]. For a given tensor, the energy is
obtained via the corner transfer matrix renormalization
group (CTMRG) method, computing an effective environ-
ment of bond dimension χ surrounding an active 2 × 2
region embedded in the infinite plane (so-called IPEPS)
[44–47]. The gradient is then simply obtained by a finite-
difference approach [48]. A U(1) quantum number is also
used occasionally to speed up the computation [49–51].
The exact contraction scheme corresponds to the limit
χ → ∞.
To establish the relevance of our symmetric PEPS ansatz

for the model (1), we compare the PEPS energy density
with that obtained by ED on several tori up to size Ns ¼ 24
and by the density matrix renormalization group (DMRG)
method [52–54] on various finite cylinders, whose
details can be found in the Supplemental Material [34].
As shown in Fig. 2(b), the IPEPS energy density turns out
to lie close to the finite-size extrapolated values of ED and
DMRG data.
Entanglement spectrum.—To get further insight into the

nature of the CSL phase, we now explore the properties
of our symmetric PEPS, where the Z3 gauge symmetry
implies topological degeneracy on closed manifolds. On
finite-width cylinders, quasidegenerate ground states can
be constructed by restricting virtual boundaries of PEPS to
fixed Z3 charges Q ¼ 0;�1, with or without inserting Z3

flux line through the cylinder. Here we focus on states
without Z3 flux line and briefly discuss the others in the
Supplemental Material [34]. The topological properties can
be most easily obtained through a study of the entangle-
ment spectrum, which is defined to be minus log of the
spectrum of reduced density matrix (RDM) of subsystem,
say the left half of a cylinder [37]. For a PEPS on an
infinitely long cylinder, the RDM can be constructed from
leading eigenvectors of the transfer operator [38]. Since the
onsite tensor carries chargeþ1, the cylinder width Nv must
be a multiple of 3. In our setting with bond dimension
D ¼ 7, exactly contracting the transfer operator is not
feasible for moderate Nv. Instead, we use the CTMRG
environment tensors to construct approximate leading
eigenvectors [21], where large environment dimension χ
is needed to achieve convergence [22]. The constructed
RDM is fully invariant under translation and SU(3)
rotations, which allows one to block diagonalize it, intro-
ducing the Z3 charges (associated with the Z3 gauge
symmetry), two U(1) quantum numbers, and the momen-
tum quantum number. The results with Nv ¼ 6; χ ¼ 343
are shown in Fig. 3 for the three different charge sectors,
i.e., Q ¼ 0;�1.
Linearly dispersing chiral modes well separated from

the high-energy continuum are seen with the same velocity,
one mode in the Q ¼ 0 sector and three modes in the

Q ¼ þ1 sector. TheQ ¼ �1 sectors have identical spectra:
As both the bare tensor and the bond jΩi are PT symmetric,
so is the wave function, but after the reflection, the bonds
are at the other side of the entanglement cut, and since the
bonds exchange 3 ↔ 3̄, this maps between the Q ¼ �1
spectra. Interestingly, for all different χ we have considered,
the lowest level in the Q ¼ 0 sector appears at finite
momentum K0 ¼ −π=3, while the three branches in the
Q ¼ �1 sectors start at momentaK�1 ¼ −π=3, π=3, and π.
We believe the momentum shift is due to a quantum of
magnetic flux trapped in the cylinder and is an intrinsic
property of the optimized PEPS that constrains us to choose
Nv ¼ 6p, p integer (for Nv ¼ 3ð2pþ 1Þ, where K0 and
K�1 do not belong to the reciprocal space, see the
Supplemental Material [34]).
Reconstructing the SU(3) irreps from the two U(1)

quantum numbers (corresponding Young tableaux are
provided in the Supplemental Material [34]), we found
that the level contents follow the prediction of the Virasoro
levels of the SUð3Þ1 WZW CFT [23,55]. However, we
observe a tripling of the branches in the Q ¼ �1 sectors,
which we shall discuss later.
Bulk correlations.—The above entanglement spectrum

provides strong evidence of SUð3Þ1 chiral topological
order. However, it has been shown that, in PEPS describing
chiral phases, certain bulk correlation lengths computed
from the transfer matrix spectrum diverge [20–22,56–61].
Nevertheless, a priori it is not known which type of
correlation is quasi-long-ranged and how critical bulk
correlations are related to the observed chiral edge modes.
Here we address this question with our symmetric PEPS
ansatz.

(a) (b)

FIG. 3. Entanglement spectrum on an infinitely long Nv ¼ 6
cylinder, computed with χ ¼ 343, in the (a) Q ¼ 0 and
(b) Q ¼ þ1 sectors. The spectrum in the Q ¼ −1 sector, found
to be identical to that in the Q ¼ þ1 sector but with conjugated
SU(3) irreps, is shown in the Supplemental Material [34]. For
convenience, the lowest eigenvalue is subtracted in each plot. One
chiral branch is seen in (a) starting at momentum K0 ¼ −π=3
and three branches are identified in (b) starting at momenta
K�1 ¼ −π=3, π=3, and π. In each sector, the irreps encircled by
red boxes (or blue boxes and arrows) agree with the level
counting of the SUð3Þ1 WZWCFT (shown on the plot vertically).
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Within the PEPS methodology, correlation lengths of
different types of operators, including the anyonic type, can
be obtained from two complementary methods. On one
hand, correlation functions of usual local operators, e.g.,
spin-spin correlation CsðdÞ ¼ hSi · Siþdexi or dimer-dimer
correlation CdðdÞ ¼ hDx

iD
x
iþdex

i − hDx
i ihDx

iþdex
i, can be

obtained by applying local operators on the physical
indices. Here the spin operators are the eight generators
of the su(3) algebra, and the dimer operator is Dx

i ¼
Si · Siþex . The Z3 gauge symmetry enables us to define
topologically nontrivial local excitations like spinon, vison,
and their bound state [17,39,62]. A spinon excitation can be
created by applying an operator X satisfying XZ ¼ ωZX on
the virtual index of local tensor such that it carries zero Z3

charge instead of the original charge 1. Similarly, X2 can
create a charge −1 spinon, since X2Z ¼ ω2ZX2. A pair of
vison excitations can be created by putting a string of Z
(or Z2) operators on the virtual level, whose end points
correspond to the visons. Parafermions, bound states of a
spinon and a vison [41,62], can be created by putting
spinons at the end points of the Z string. All these real space
correlations obtained using the CTMRG environment
tensors (see the Supplemental Material [34] for further
details) are shown in Fig. 4(a).
On the other hand, correlation lengths can also be

extracted from the spectrum of transfer matrix, constructed
with CTMRG environment tensors (see the Supplemental
Material [34]), whose eigenvalue degeneracies carry infor-
mation about the types of correlation. Correlation lengths
along horizontal and vertical directions are found to be
the same, as expected. Denoting the distinct transfer
matrix eigenvalues as ta ða ¼ 0; 1;…Þ with jt0j > jt1j >
jt2j > � � �, it turns out t0 is nondegenerate, suggesting
absence of long-range order in the variational wave

function (confirming ED results). The subleading eigen-
values ta (a ¼ 1, 2, 3) are sixfold degenerate, followed by a
nondegenerate t4. These eigenvalues give direct access to
series of correlation lengths ξðaÞ ¼ −1= logðjta=t0jÞ, which
therefore carry the same degeneracies. We have also
computed the correlation length with a �1 Z3 flux by
inserting a string of Z (or Z2) operators, where the
leading eigenvalue of the corresponding transfer matrix
is denoted as tZ;1 [63]. From tZ;1, which is nondegenerate,
one obtains the leading correlation length in the flux

sector ξð1ÞZ ¼ −1= logðjtZ;1=t0jÞ.
A summary of various correlation lengths versus χ from

both methods is shown in Fig. 4(b). We find that the largest

one in all sectors, ξð1ÞZ , is equal to the correlation length
found between a pair of visons; it is nondegenerate, in
agreement with the fact that visons carry no spin. In the
sector without flux, the leading correlation length ξð1Þ
perfectly agrees with the one extracted from placing a
spinon-antispinon pair. Moreover, since PT symmetry
maps spinons placed on reflected bonds to antispinons,
we expect the spinon correlations to have a degeneracy
structure 3 ⊕ 3̄, which is indeed consistent with the sixfold
degeneracy in ξð1Þ and further supported by checking the
U(1) quantum numbers of the t1 multiplet. The U(1)
quantum numbers further suggest that t2;3, which are also
sixfold degenerate, also carry SU(3) representation 3 ⊕ 3̄.
Thus, ξð1;2;3Þ all correspond to spinon correlation lengths.
This, in fact, is in correspondence with the three linearly
dispersing branches in the ES in the Q ¼ �1 charged
sectors, as we shall discuss later. Examining further, we
find ξð4Þ is identical to dimer correlation length, where
nondegeneracy agrees with dimer operator being SU(3)
rotation invariant. Depending on the parafermion type, the
ξparafermion have different values, both of which are smaller
than the spinon correlation length. Interestingly, all these
correlation lengths, except the spin correlation length, have
no sign of saturation with increasing χ, in agreement with
our expectation that the state is not in the Z3 quantum
double phase.
Degeneracy structure of topological chiral PEPS.—A

remarkable feature of our results is the correspondence
between the leading four eigenvalues of the transfer matrix
and the different sectors in the ES: The Q ¼ 0 sector has
one branch, while Q ¼ �1 each have three almost degen-
erate branches. This is in direct analogy to the unique
leading eigenvalue t0, which has trivial spin, and the
approximate threefold degeneracy of t1, t2, and t3, which
have perfectly degenerate spins 3 and 3̄, matching the
perfect degeneracy between Q ¼ �1. A similar correspon-
dence between (approximate) degeneracy of the (2D)
transfer operator and of the ES branches was observed
for chiral PEPSs with SUð2Þ1 counting, where it could
be explained as arising from the symmetry of the tensors,
and subsequently used to remove the degeneracy in the
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FIG. 4. Different bulk correlations in the optimized PEPS. From
the correlations versus distance (computed with χ ¼ 392) in (a),
we extract the correlation lengths using exponential fits, which are
shown in (b) (using the same symbols), along with those extracted
from the transfer matrix spectrum with or without flux inserted
(shown as lines), with g the degeneracy of the eigenvalue. Both
approaches agree for the spinon, vison, and dimer correlation
lengths, which show no saturation with increasing χ.
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nontrivial sector in the vicinity of a (fine-tuned) perfectly
degenerate point [61]. Furthermore, we checked that the
same correspondence also holds in the PEPS description of
non-Abelian SUð2Þ2 CSL [22]. It is suggestive that such a
correspondence in the (approximate) degeneracy structure
is a general feature of chiral PEPS and will also hold for
general SUðNÞk models; indeed, both ES and the eigen-
values ti are extracted from the same objects, namely, the
fixed points of the CTMRG environment. It would be
interesting to see whether such a correspondence could
help resolve the additional chiral branches in ES of general
chiral models and further characterize the precise nature of
a chiral theory.
Conclusion and outlook.—In this Letter, we have pro-

posed a model for a SUð3Þ1 CSL on the square lattice and,
by ED techniques, unambiguously identified the relevant
parameter space. We have then focused on constructing and
optimizing a symmetric PEPS ansatz for the CSL, whose
variational energy is remarkably good as compared to ED
and DMRG data. For the first time, linear dispersing
branches in all three sectors of SUð3Þ1 WZW CFT can
be obtained with PEPS. A comparison between edge
spectrum and bulk correlations reveal a fine structure in
the bulk-edge correspondence, which will be tested in
further study of SUðNÞk PEPS CSL. Certain unresolved
issues, e.g., anyon statistics of chiral topological order,
remain open, which we hope to uncover in the future.

We acknowledge useful conversations with M. Arildsen,
C. Delcamp, A. Hackenbroich, M. Iqbal, A. Ludwig, G.
Sierra, and J. Slingerland. J. Y. C. and N. S. acknowledge
support by the European Union’s Horizon 2020 Programme
through the ERC Starting Grant WASCOSYS (Grant
No. 636201) and from the DFG (German Research
Foundation) under Germany’s Excellence Strategy (EXC-
2111–390814868). D. P. acknowledges support by the
TNSTRONG ANR-16-CE30-0025 and TNTOP ANR-18-
CE30-0026-01 grants awarded by the French Research
Council. The authors were granted access to the HPC
resources of CALMIP and GENCI supercomputing centers
under the allocation 2017-P1231 and A0030500225, respec-
tively, and computations were also carried out on the TQO
cluster of the Max-Planck-Institute of Quantum Optics.

[1] G. Misguich and C. Lhuillier, Two-dimensional quantum
antiferromagnets, in Frustrated Spin Systems, edited by H. T.
Diep (World Scientific, Singapore, 2005), pp. 229–306.

[2] L. Savary and L. Balents, Quantum spin liquids: A review,
Rep. Prog. Phys. 80, 016502 (2017).

[3] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid
states, Rev. Mod. Phys. 89, 025003 (2017).

[4] X.-G. Wen, Quantum orders and symmetric spin liquids,
Phys. Rev. B 65, 165113 (2002).

[5] V. Kalmeyer and R. B. Laughlin, Equivalence of the
Resonating-Valence-Bond and Fractional Quantum Hall
States, Phys. Rev. Lett. 59, 2095 (1987).

[6] X. G. Wen, F. Wilczek, and A. Zee, Chiral spin states and
superconductivity, Phys. Rev. B 39, 11413 (1989).

[7] X. G. Wen, Topological orders in rigid states, Int. J. Mod.
Phys. B 04, 239 (1990).

[8] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-
Dimensional Magnetotransport in the Extreme Quantum
Limit, Phys. Rev. Lett. 48, 1559 (1982).

[9] B. I. Halperin, Statistics of Quasiparticles and the Hierarchy
of Fractional Quantized Hall States, Phys. Rev. Lett. 52,
1583 (1984).

[10] X. G. Wen, Gapless boundary excitations in the quantum
Hall states and in the chiral spin states, Phys. Rev. B 43,
11025 (1991).

[11] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S.
Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and
A.M. Rey, Two-orbital SU(N) magnetism with ultracold
alkaline-earth atoms, Nat. Phys. 6, 289 (2010).

[12] M. Hermele, V. Gurarie, and A. M. Rey, Mott Insulators of
Ultracold Fermionic Alkaline Earth Atoms: Undercon-
strained Magnetism and Chiral Spin Liquid, Phys. Rev.
Lett. 103, 135301 (2009).

[13] P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M.
Läuchli, Chiral Spin Liquids in Triangular-Lattice SU(N)
Fermionic Mott Insulators with Artificial Gauge Fields,
Phys. Rev. Lett. 117, 167202 (2016).

[14] F. Verstraete and J. I. Cirac, Renormalization algorithms for
quantum-many body systems in two and higher dimensions,
arXiv:condmat/0407066.

[15] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z.
Huang, B. Normand, and T. Xiang, Gapless Spin-Liquid
Ground State in the s ¼ 1=2 Kagome Antiferromagnet,
Phys. Rev. Lett. 118, 137202 (2017).

[16] H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima,
Gapless Kitaev Spin Liquid to Classical String Gas through
Tensor Networks, Phys. Rev. Lett. 123, 087203 (2019).

[17] N. Schuch, J. I. Cirac, and D. Pérez-García, PEPS as ground
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