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The Kohn-Luttinger mechanism for unconventional superconductivity (SC) driven by weak repulsive
electron-electron interactions on a periodic lattice is generalized to the quasicrystal (QC) via a real-space
perturbative approach. The repulsive Hubbard model on the Penrose lattice is studied as an example, on
which a classification of the pairing symmetries is performed and a pairing phase diagram is obtained.
Two remarkable properties of these pairing states are revealed, due to the combination of the presence of the
point-group symmetry and the lack of translation symmetry on this lattice. First, the spin and spacial
angular momenta of a Cooper pair is decorrelated: for each pairing symmetry, both spin-singlet and spin-
triplet pairings are possible even in the weak-pairing limit. Second, the pairing states belonging to the 2D
irreducible representations of the D5 point group can be time-reversal-symmetry-breaking topological SCs
carrying spontaneous bulk super current and spontaneous vortices. These two remarkable properties are
general for the SCs on all QCs, and are rare on periodic lattices. Our work starts the new area of
unconventional SCs driven by repulsive interactions on the QC.
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Introduction.—The quasicrystal (QC) has attracted a lot
of research interests [1] since synthesized [2]. The QC
represents a certain type of solid structures which are lack
of translation symmetry but can possess rotation sym-
metries such as the fivefolded or eightfolded ones for-
bidden by crystalline point group [2]. The electronic
structure on a QC is exotic and fundamentally different
from that on a crystal. Specifically, due to the lack of
translation symmetry on a QC, the lattice momentum is no
longer a good quantum number and no Fermi surface (FS)
can be defined. Various exotic quantum states with in-
triguing properties have been revealed on the QC recently
[3–27]. Particularly, the definite experimental evidences for
superconductivity (SC) in the recently synthesized Al-Zn-
Mg QC [28], together with those in previous ternary QCs
[29,30] and crystalline approximants [31], have attracted a
lot of research interests [32–36]. It is interesting to ask a
question here: are there any common features of super-
conducting states on the QC which are different from those
on a crystal?
In Refs. [32,33,36], the pairing states for attractive

Hubbard models are studied on QC lattices. It’s found that
the attractive interactions can lead to Cooper pairing [37]
between a time-reversal (TR) partners, obeying the
Anderson’s theorem [38]. Further more, despite the lack
of lattice momentum on the QC, the Cooper pairing can

lead to a finite superfluid density [36]. These results
[32,33,36] suggest that the SC on the QC with attractive
interactions is consistent with the BCS theory. However,
the situation is distinct for the cases with repulsive
interactions, as will be shown below. The pairing in the
presence of weak repulsive interactions is induced by the
Kohn-Luttinger (KL) mechanism [39,40]. This theory
states that the interaction renormalization brought about
by exchanging particle-hole excitations is anisotropic on
the FS, which can generate some attractive-interaction
channels between the TR partners, which finally leads to
Cooper pairing on the FS. Here, we generalize this
mechanism to the QC, and obtain unconventional SCs
with a series of remarkable properties intrinsic to the QCs
which are rare on periodic lattices.
In this Letter, we study the KL SC in a weak-U repulsive

Hubbard model on a Penrose lattice. Via a real-space
perturbative treatment up to the second order, we acquire an
effective interaction vertex, through which we derive a
linearized gap equation near the superconducting critical
temperature Tc, solving which we obtain the Tc and the
pairing gap functions. We classify the pairing symmetries
and obtain the pairing phase diagram after large scale
numerical calculations. Two remarkable results are
obtained. First, the orbital- and spin-angular momenta of
the Cooper pair are decorrelated even without the spin-orbit
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coupling (SOC), which means that we can obtain both
spin-singlet and spin-triplet pairings for the same pairing
symmetry, distinguished from the case on a periodic lattice.
Second, any 2D irreducible representation (IR) of the D5

point group can bring about TR symmetry (TRS)-breaking
topological SCs (TSCs) hosting spontaneous bulk super
current and spontaneous vortices. These two properties are
caused by the combination of the point-group symmetry
and the lack of translation symmetry, and are thus general
for the SCs on any QC, and are rare on periodic lattices.
Model and approach.—Let us consider the following

standard repulsive Hubbard model on the Penrose lattice
[41] with lattice constant a shown in Fig. 1(a) [42],

Ĥ ¼ −
X
i;j;σ

tijc
†
iσcjσ þ U

X
i

ni↑ni↓ − μ
X
i;σ

niσ; ð1Þ

where ciσ annihilates an electron at site i with spin σ, niσ is
the electron-number operator, and μ denotes the chemical
potential. The hopping integral tij ¼ e−jri−rjj=minðfjri−rjjgÞ,
where jri − rjj denotes the distance between different
sites i and j, and minðfjri − rjjgÞ ¼ 0.618a. The tight-
binding (TB) part of Eq. (1) is diagonalized as ĤTB ¼P

m ϵ̃mc
†
mσcmσ, with cmσ ¼

P
i ξimciσ. Here m labels a

single-particle eigenstate with energy ϵ̃m ¼ ϵm − μ relative
to the chemical potential, and ξim represents for the wave
function for the state m. The density of states (DOS) at the
Fermi energy shown in Fig. 1(b) [43] peaks at around the
filling fraction of 0.9, which will be focused on below.
In unit of the largest hopping integral, the total band width
WD is about 7.56. We consider weak U > 0 and adopt
perturbative approach in our work.
For this repulsive Hubbard model, SC is forbidden in the

mean-field (MF) level. However, it can be driven by the KL
mechanism, wherein unconventional SC is mediated by
exchanging particle-hole excitations. Due to the lack of
translation symmetry, we engage a real-space perturbative
treatment, whose details are provided in the Supplemental
Material [44]. The real-space propagator of the particle-
hole excitations is described by the susceptibility function,
which in the bare level reads [44]

χð0Þij ðiΩnÞ ¼
Z

β

0

eiΩnτdτhTτc
†
i↑ðτÞci↑ðτÞc†j↑cj↑i0;

¼
X
ml

ξimξjmξilξjl
nFðϵ̃mÞ − nFðϵ̃lÞ
iΩn þ ϵ̃l − ϵ̃m

: ð2Þ

In our calculations, only about a 1000 × 1000 number of
ðm; lÞ near the Fermi level are summed in Eq. (2). In our
perturbative treatment [44], the four second-order processes
of exchanging particle-hole excitations induce effective
interactions, from which we obtain [44]

Ĥeff ¼ −
X
i;j;σ

tijc
†
iσcjσ þU

X
i

ni↑ni↓ − μ
X
i;σ

niσ

− ðU2=2Þ
X
i;j;σ;σ0

χijc
†
iσciσ0c

†
jσ0cjσ; ð3Þ

with χij ≡ χð0Þij ðiΩn ¼ 0Þ. The induced term with coeffi-
cient −ðU2=2Þ in Eq. (3) can drive SC in the MF level.
A BCS-MF study is performed on Eq. (3) [44].

Noting that the Cooper pairing can only take place near
the Fermi level, we transform the real-space pairing order
parameter Δij into the m space as Δ̃mn and maintain those
m=n states within a narrow energy shell near the Fermi
level. A self-consistent MF equation for Δ̃mn is obtained
at any temperature, leading to the following linearized
equation at Tc [44],

X
m0n0

Fmn;m0n0
˜̃Δm0n0 ¼ ˜̃Δmn; ð4Þ

with ˜̃Δmn ¼ Δ̃mnfmn, where

fmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nFð−ϵ̃nÞ − nFðϵ̃mÞ�=ðϵ̃m þ ϵ̃nÞ

p
: ð5Þ

The formula Fmn;m0n0 for the singlet pairing is given as

FðsÞ
mn;m0n0 ¼−fmnfm0n0

�
U
X
i

ξimξinξim0ξin0

þU2

4

X
i;j

χijðξimξjnþ ξinξjmÞ× ðm;n⇒m0;n0Þ
�
;

ð6Þ
and for the triplet case it is

FðtÞ
mn;m0n0 ¼ fmnfm0n0

×

�
U2

4

X
i;j

χijðξimξjn−ξinξjmÞ× ðm;n⇒m0;n0Þ
�
:

ð7Þ
The linearized gap equation (4) takes the form of an

eigenvalue problem of the matrix Fmn;m0n0 (here we take
the combined mn or m0n0 as one index), wherein its largest

(a) (b)

FIG. 1. Lattice pattern with 191 sites (a) and the DOS of the TB
Hamiltonian on a lattice with 13 926 sites (b). In (a), the lattice
constant is a.
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eigenvalue attains 1 at Tc, with the corresponding eigen-

vector ˜̃Δmn determining the pairing symmetry. Due to the
lack of translation symmetry here, the real-space gap
function Δi;j is no longer just a function of i − j, but a
binary function of both i and j. The situation is similar in
the m space. The m, n dependence of jΔ̃mnj is shown in
Fig. 2 for two typical solutions solved from Eq. (4), where
for each m there is no unique n which makes jΔ̃mnj
dominate that of any other n, distinct from the result for
U < 0 wherein jΔ̃mmj ≫ jΔ̃mnðn ≠ mÞj [36]. Such a
behavior breaks the Anderson’s theorem applied for the
strong-disorder-limit superconductors.

Pairing symmetries and phase diagram.—The classifi-
cation of pairing symmetries here is based on the symmetry
of the linearized gap equation (4) [44]. It is proved that the
“pairing potential” Fmn;m0n0 is invariant under the D5 point

group. Consequently, the set of solutions f ˜̃ΔðαÞ
mng (α ¼ 1 or

1,2) of Eq. (4) corresponding to the same Tc furnish an IR
of D5. This statement also holds for the real-space gap

function ΔðαÞ
i;j [44]:

ΔðαÞ
ĝi;ĝj ¼

X
α0
DðgÞ

αα0Δ
ðα0Þ
i;j ; ð8Þ

with any g ∈ D5. Then, from the IR which the set of
matrices fDðgÞg belong to, one can judge the pairing
symmetry of the state with gap function ΔðαÞ

i;j .
The four IRs of the D5 point group are listed in Table I,

including two 1D IRs, i.e., A1 and A2, and two 2D IRs, i.e.,
E1 and E2. For each IR, we list the representation matrices
for the two generators ofD5, i.e., the C2π=5 and σx, up to an
arbitrary unitary transformation. Each IR listed in Table I
corresponds to one pairing-symmetry class. The identity
representation A1 is the s wave with angular momentum
l ¼ 0. The A2 representation is the hy5−10x2y3þ5x4y wave
with l ¼ 5 which is σ-reflection odd. The E1 (E2) repre-
sentation provides the doubly degenerate p wave (d wave)
with l ¼ 1 (l ¼ 2).
Note that for each of the pairing symmetry listed in

Table I, both spin-singlet and spin-triplet pairings are
possible, suggesting that the pairing angular momentum
l and the spin statistics are independent. Such independence
between the former and the latter is general on all QC
lattices due to the lack of translation symmetry. Generally,
in a singlet (triplet) pairing state where the spin part of the
Cooper-pair wave function is exchange odd (even), the
Fermi statistics requires the spacial part to be exchange
even (odd). The exchange operation in the latter case can be
viewed as a 180° rotation about the mass center of the
Cooper pair, and thus this exchange parity is related to the
angular momentum l̃ of the moving Cooper pair about its
mass center. However, without translation symmetry, l̃ is
different from l, as the latter is with respect to the fixed
coordinate origin. Therefore, on QC lattices, the pairing

FIG. 2. Contour plots of relative jΔ̃mnj and Δi;O, where O is the
center of Penrose tiling, for a singlet s state [(a),(c) filling ¼ 0.81,
U=WD ¼ 0.32] and a triplet dþ id state [(b),(d) filling ¼ 0.98,
U=WD ¼ 0.32]. In (d), the direction of each marked green arrow
at the site i represents phase angle ofΔi;O and the color represents
the relative amplitude.

TABLE I. IRs of the D5 point group and classification of pairing symmetries. R̂θ denotes the rotation about the center of the Penrose
lattice by the angle θ ¼ 2nπ=5 and σ̂ represents the reflection about any of the five symmetric axes. DðC2π=5Þ and DðσxÞ are the
representation matrices for the two generators of D5, i.e., C2π=5 and σx, up to any unitary transformation. For each pairing symmetry
listed, both spin-singlet and spin-triplet pairings are possible.

IRs DðC2π=5Þ DðσxÞ Pairing symmetries Ground-state gap functions

1D A1 I I s ΔR̂θi;R̂θj
¼ Δi;j, Δσ̂i;σ̂j ¼ Δi;j

A2 I −I hy5−10x2y3þ5x4y ΔR̂θi;R̂θj
¼ Δi;j, Δσ̂i;σ̂j ¼ −Δi;j

2D E1 cosð2π=5ÞI � i sinð2π=5Þσy σz ðpx; pyÞ ΔR̂θi;R̂θj
¼ e�iθΔi;j, Δσ̂i;σ̂j ≠ �Δi;j

E2 cosð4π=5ÞI � i sinð4π=5Þσy σz ðdx2−y2 ; d2xyÞ ΔR̂θi;R̂θj
¼ e�2iθΔi;j, Δσ̂i;σ̂j ≠ �Δi;j
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angular momentum l and the spin statistics are unrelated.
Note that such independence between the former and latter
can also originate from the lack of inversion symmetry,
which can also take place on noncentrosymmetric periodic
lattices [45].
The pairing phase diagram is shown in Fig. 3 obtained

through solving Eq. (4) for the singlet and triplet channels
separately. In our calculations, we adopt a lattice with 13
926 sites with open-boundary condition. We focus on the
filling range of (0.78,0.99) wherein the DOS is relatively
large and the Tc is relatively high. The Hubbard-U adopted
here is within a weak-coupling range of ð0;WD=3Þ. For the
sake of reducing the computation complexity, we limit the
states marked by mð0Þ=nð0Þ in Eq. (4) to Eq. (7) within a
narrow energy window near the Fermi level containing
about 100 states. From Fig. 3, the obtained pairing
symmetries slightly depend on U=WD but strongly depend
on the filling level. Six out of the eight possible pairing
states listed in Table I are obtained, including the singlet
and triplet s and d waves, the singlet p-wave and the triplet
h-wave pairing symmetries.
Exotic TSCs.—The spin-singlet and spin-triplet p- and

d-wave pairings states listed in Table I or Fig. 3 belong to
2D IRs of the point group, suggesting the existence of

doubly degenerate gap functions Δð1;2Þ
mn , which would be

mixed below Tc to lower the free energy. At T ¼ 0, the
minimization of the expectation value of the effective
Hamiltonian (3) in the BdG MF ground state with gap

form factor Δð1Þ
mn þ αΔð2Þ

mn yields α ¼ �i for all these cases.
Therefore such degenerate doublets would be mixed as
pþ ip and dþ id in the ground state. The real-space gap

functions Δi;j ¼ Δð1Þ
i;j � iΔð2Þ

i;j of these mixed states show
nontrivial winding-number structures: with each θ-angle
rotation (θ ¼ 2nπ=5) about the lattice center performed on
combined ði; jÞ, the complex phase ofΔi;j would be shifted
by �lθ (l: angular momentum), as listed in Table I, and
shown in Figs. 2(c) and 2(d) for the s- and ðdþ idÞ-wave

pairings, respectively. Such nontrivial winding numbers of
these pairing states suggest that they are topologically
nontrivial.
To better characterize the topology of these pairing states

on the QC without translation symmetry [48,49], we use
the K-theory class characterized by the Chern number. On
the finite lattice, based on the spectral-localizer method, the
Chern number is obtained as the following pseudospectrum
invariant index Cps [44],

Cps ¼
1

2
Sig

�
X Y þ iH

Y − iH −X

�
: ð9Þ

Here X and Y are the position operators, H is the BdG-
Hamiltonian matrix and Sig represents the difference
between the numbers of positive and negative eigenvalues
of the matrix acted on [44]. Using this formula, we prove
[44] that any global unitary transformation on the system
maintains Cps, and that the TR operation changes the sign
of Cps, which lead to the following conclusions. First, the
Cps of all 1D-IR pairing states are zero. Second, for triplet
pairing states belonging to the 2D-IRs, the Cps for the TRS-
breaking chiral-pairing states

P
ij Δi;jðci↑cj↓ þ ci↓cj↑Þ þ

H:c: [or
P

ij Δi;jðci↑cj↑ � ci↓cj↓Þ þ H:c:] are twice
of those for the spinless system with

P
ij Δi;jcicj þ

H:c:, and those for the TRI helical-pairing statesP
ijðΔi;jci↑cj↑ � Δ�

i;jci↓cj↓Þ þ H:c: are zero. These triplet
pairing states are degenerate here without considering the
spin-orbit coupling. Our numerical calculations on the
2D-IR singlet and chiral-triplet pairing states appearing
in the phase diagram yield that their Chern numbers are
generally integer multiples of twice of their spacial angular
momenta, suggesting the presence of TSCs without trans-
lation symmetry.
A general and remarkable property of the TSCs on

a QC is the presence of spontaneous bulk super current
caused by the lack of translation symmetry. To illustrate
this point, we have calculated the expectation values of
the site-dependent current operator Ĵi ¼ −δĤ=δAijA¼0 ¼
ði=2ÞPjσ tijðrj − riÞc†iσcjσ þ H:c: (see [44]). Note that Ĵi
is TR odd, whose expectation value hĴii should vanish in
TRI states. However, in the TRS-breaking chiral pairing
states belonging to the 2D IR, our numerical results shown
in Fig. 4 illustrate a fivefolded-symmetric pattern with
hĴii ≠ 0 for any typical site. It is intriguing that the super
current forms spontaneous vortices here and there, leading
to bulk orbital magnetization that can be detected by
experiments. Note that on periodic lattices, the spontaneous
super current for a topological superconducting state
usually appears at the edge [50–58], although it can also
appear in the bulk on complex enough lattices. In the latter
case, the averaged current within a unit cell should vanish,
otherwise the superfluid density (see below) would be
infinity. However, on the QCs with no translation symmetry

0.78 0.83 0.88 0.93 0.99
0.04

0.11

0.18

0.25

0.32

FIG. 3. Ground-state pairing phase diagram in the filling-
interaction plane. The interaction strength of U is limited within
a weak-coupling range of ð0; WD=3Þ.
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and hence no unit cell, the distribution pattern of the super
current is not limited by such a constraint.
Discussion and conclusion.—Onemight wonder whether

the lack of translation symmetry on the Penrose lattice
would destroy the phase coherence of the pairing state.
This puzzle can be settled by investigating the superfluid
density ρs defined as ραβs ≡ limA→0ð−hAjĴα½A�jAi=AβÞ,
with α=β ¼ x, y [44]. Here a weak uniform vector potential
A along the β direction is coupled with the system, Ĵ½A� ¼
−δĤ½A�=δA and jAi represents the ground state of Ĥ½A�. It
is proved here [44] that ραβs ¼ ρ0δαβ and our numerical result
yields ρ0 > 0, suggesting a true superconducting state with
nonzero superfluid density and hence measurable Meissner
effect.
The real-space perturbative approach engaged here

and the insight acquired from this Letter would also
apply to other QCs. Particularly, the recently synthesized
30°-twisted bilayer graphene [59,60] provides a relevant
platform for the QC Hubbard model studied here. Similar
exotic TSCs would be detected there with proper doping.
More interestingly, the D12 point group of that QC system
leads to more IRs than those of the Penrose lattice.
Consequently, exotic TSCs with winding numbers of
3, 4, and 5 are possible, higher than the 1 (pþ ip) or
2 (dþ id) obtained here or in periodic systems.
In conclusion, we have performed a real-space pertur-

bative calculation for the Hubbard model on the Penrose
lattice. Our results reveal various classes of unconventional
SCs induced via the Kohn-Luttinger mechanism. We have

classified the pairing symmetries according to the IRs of the
D5 point group of this lattice, with most of them exhibited
in the pairing phase diagram. Remarkably, each pairing
symmetry can be both spin-singlet and spin-triplet. All the
2D-IR pairing states can be TRS-breaking chiral TSCs
hosting spontaneous bulk super current and spontaneous
vortices. These pairing-mechanism-independent exotic
properties of the SCs on the Penrose lattice are caused
by the combination of the point-group symmetry and the
lack of translation symmetry, and are thus general for all
QC lattices, and are rare on periodic lattices. Our work
starts the new area of unconventional SCs driven by
repulsive interactions on the QC.
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