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The combination of spin-orbit coupling with interactions results in many exotic phases of matter. In this
Letter, we investigate the superconducting pairing instability of the two-dimensional extended Hubbard
model with both Rashba and Dresselhaus spin-orbit coupling within the mean-field level at both zero and
finite temperature. We find that both first- and second-order time-reversal symmetry breaking topological
gapped phases can be achieved under appropriate parameters and temperature regimes due to the presence of
a favored even-parity sþ id-wave pairing even in the absence of an external magnetic field or intrinsic
magnetism. This results in two branches of chiral Majorana edge states on each edge or a single zero-energy
Majorana corner state at each corner of the sample. Interestingly, we also find that not only does tuning the
doping level lead to a direct topological phase transition between these two distinct topological gapped
phases, but also using the temperature as a highly controllable and reversible tuning knob leads to different
direct temperature-driven topological phase transitions between gapped and gapless topological super-
conducting phases. Our findings suggest new possibilities in interacting spin-orbit coupled systems by
unifying both first- and higher-order topological superconductors in a simple but realistic microscopic model.
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Introduction.—Spin-orbit coupling (SOC) is ubiquitous
in condensed matter systems and responsible for many
remarkable phenomena [1–16]. In recent years, a surge of
research interest in SOC was stimulated by the discovery
that SOC plays a critical role in realizing various topo-
logical phases, ranging from noninteracting or weakly
correlated topological insulators (TIs) and topological
superconductors (TSCs) to strongly correlated topological
phases [17–20]. Among them, TSCs are noticeable as they
harbor Majorana modes, which are believed to be a
possibility for the building blocks of topological quantum
computation [21–25]. While odd-parity superconductors
generally provide a natural realization of TSCs [26–31],
their scarcity in nature turns out to be a serious obstacle
from an experimental point of view. Fortunately, SOC
enables the realization of effective odd-parity supercon-
ductivity (SC) on the basis of abundant even-parity SC,
providing a more readily accessible route for the realization
of TSCs [32–39]. Over the past decade, remarkable
progress along this route has been witnessed [40–48].
Very recently, a new class of topological phases, named

higher-order TIs and TSCs, have emerged and attracted a
great deal of attention because of the enrichment of
boundary physics and the occurrence of new possibilities
for topological phase transitions [49–64]. The word “order”
in this context gives the codimension of the gapless

boundary modes, namely, an nth order TI or TSC has
gapless boundary modes with codimension n. As the
gapless boundary modes of all conventional TIs and
TSCs have n ¼ 1, they thus belong to the first-order
topological phases in this language.
Because higher-order TSCs provide new platforms of

Majorana modes, their potential application in topological
quantum computation has triggered quite a few theoretical
proposals on their experimental realizations [65–89].
However, the superconducting pairings in previous works
were mostly introduced phenomenologically, and realistic
microscopic models for higher-order TSCs are still gen-
erally lacking. Over the past decade, the Hubbard model
with SOC and on site interaction, as one of the simplest
microscopic models for first-order TSCs, has been exten-
sively studied in both condensed matter and in the cold
atom communities [90–96]. In this Letter, we extend the
Hubbard model in two dimensions to include both on site
(repulsive) and intersite (attractive) interactions and inves-
tigate its even-parity superconducting pairing instability at
the mean-field level [97].
Our study reveals that depending on the temperature and

the parameters of the model, the leading pairing channel
can be d-, s-, or sþ id-wave [98,99]. Remarkably, we find
when the sþ id-wave is favored, a first-order TSC with
two branches of chiral edge states and a second-order TSC
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with four Majorana corner modes, as well as a direct
topological phase transition between them, can be realized
by tuning the Fermi surface (FS) structure, even in the
absence of a magnetic field or magnetism. Furthermore, we
show that the temperature itself is a highly controllable and
reversible tuning knob to drive topological phase transi-
tions in this system.
Theoretical formalism.—The two-dimensional extended

Hubbard model, which provides a simple description for
short-ranged interacting systems [97], reads as

H ¼ −t
X

hi;ji;α
c†i;αcj;α þ H:c: − μ

X

i;α

c†i;αci;α

þ iλR
X

i;α;β

ðc†i;αsαβy ciþx̂;β − c†i;αs
αβ
x ciþŷ;βÞ þ H:c:

þ iλD
X

i;α;β

ðc†i;αsαβy ciþŷ;β − c†i;αs
αβ
x ciþx̂;βÞ þ H:c:

þ U
X

i

n̂i;↑n̂i;↓ þ
V
2

X

i;j;α

n̂i;αn̂j;ᾱ; ð1Þ

where hi; ji denotes summation over nearest-neighbor
sites, c†i;αðci;αÞ is the creation (annihilation) operator at

site i with spin α ¼ ð↑;↓Þ, n̂i;α ¼ c†i;αci;α, t is the nearest-
neighbor hopping amplitude, μ is the chemical potential, λR
(λD) is the Rashba (Dresselhaus) SOC amplitude, U is the
on site repulsive (U > 0) interaction strength, and V is the
nearest-neighbor attractive (V < 0) interaction strength.
The unit vector along the x (y) direction is represented
by x̂ (ŷ), and sx;y are Pauli matrices in spin space. The
abbreviation H.c. stands for Hermitian conjugation, and the
symbol i in the beginning of both second and third lines
(and elsewhere) is taken to denote the pure imaginary
number and should not be confused with the site index
which generally occurs as subscripts.
Although in the presence of SOC, odd- and even-

parity pairings can generally coexist, we restrict ourselves
to even-parity pairing for the sake of clarity and sim-
plicity. Accordingly, the Bogoliubov–de Gennes (BdG)
Hamiltonian at the mean-field level in momentum space
(see Supplemental Material [100]) can be rewritten as
H ¼ 1

2

P
k Ψ

†
kHðkÞΨk, with ΨT

k ¼ ðck↑; ck↓; c†−k↓;−c†−k↑Þ
and

HðkÞ ¼ τzfξðkÞs0 þ lxðkÞsx þ lyðkÞsyg þ ΔðkÞτxs0; ð2Þ

where τx;y;z are Pauli matrices in particle-hole space, and
ξk ¼ −2tðcos kx þ cos kyÞ − μ is the kinetic energy mea-
sured from the Fermi energy; lðkÞ ¼ (lxðkÞ; lyðkÞ) is the
SOC vector, with lðkÞ ¼ lRðkÞ þ lDðkÞ, where lRðkÞ ¼
2λRðsin ky;− sin kxÞ and lDðkÞ ¼ 2λDðsin kx;− sin kyÞ rep-
resents the Rashba andDresselhaus SOC, respectively. The
superconducting order parameter is given by

ΔðkÞ ¼ Δc
0 þ Δc

sηsðkÞ þ Δc
dηdðkÞ; ð3Þ

whereΔc
0,Δc

s , andΔc
d aremomentum-independent complex

numbers that represent on site s-, extended s-, and d-wave
SC, respectively. The three pairing amplitudes satisfy the
following self-consistent superconducting gap equations:

Δc
0 ¼ −

U
4N

X

k;σ

ΔðkÞF σðkÞ; ð4Þ

Δc
s ¼ −

V
N

X

k;σ

ΔðkÞηsðkÞF σðkÞ; ð5Þ

Δc
d ¼ −

V
N

X

k;σ

ΔðkÞηdðkÞF σðkÞ; ð6Þ

where N denotes the number of sites, σ ¼ �1,
ηsðkÞ ¼ ðcos kx þ cos kyÞ=2, ηdðkÞ ¼ ðcos kx − cos kyÞ=2,
and

F σðkÞ ¼
1

Eσ
k

tanh

�
βEσ

k

2

�
: ð7Þ

Here β is the inverse of temperature and

Eσ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2σðkÞ þ jΔðkÞj2

q
ð8Þ

are the two excitation spectra of the BdG Hamiltonian,
where εσðkÞ ¼ ξðkÞ þ σlðkÞ refers to the normal-state
spectra with lðkÞ the magnitude of the lðkÞ vector.
To capture the phases of the three pairings, we define

Δc
α ¼ Δαeiϕα for α ∈ f0; s; dg, with Δα and ϕα being real

numbers. Accordingly, the three complex self-consistent
equations given by Eqs. (4)–(6) can be separated into six
real equations. By solving the self-consistent equations
numerically, we find that, when both s- and d-wave
superconducting order parameters are nonvanishing, their
phases favor ϕs ¼ ϕ0 and ϕd ¼ ϕ0 � π=2 (“�” are degen-
erate in energy). Therefore, the superconducting order
parameter can be written explicitly as

ΔðkÞ ¼ Δ0 þ ΔsηsðkÞ þ iΔdηdðkÞ; ð9Þ

and, accordingly, the six real self-consistent superconduct-
ing gap equations are reduced to

Δ0 ¼ −
U
4N

X

k;σ

fΔ0 þ ΔsηsðkÞgF σðkÞ; ð10Þ

Δs ¼ −
V
N

X

k;σ

ηsðkÞfΔ0 þ ΔsηsðkÞgF σðkÞ; ð11Þ

1 ¼ −
V
N

X

k;σ

η2dðkÞF σðkÞ: ð12Þ
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It should be noted that, when s- and d-wave pairing coexist,
the last term of the BdG Hamiltonian (2) should be rewritten
as f½Δ0 þ ΔsηsðkÞ�τx − ΔdηdðkÞτygs0. Throughout this
Letter, we set the hopping amplitude t ¼ 1 as the energy
unit and fλR; U; Vg ¼ f0.3; 2;−5g, unless we clearly men-
tion otherwise. However, they are not unique, and different
sets of parameters will yield a qualitatively similar phase
diagram.
Results.—We first perform the self-consistent calcula-

tions at zero temperature. For definiteness, we consider that
only λD and μ are tunable parameters. We restrict ourselves
to the positive parameter regime and present the corre-
sponding phase diagram in Fig. 1. The result reveals the
existence of three distinct types of pairing, including time-
reversal symmetry (TRS) preserving s- and d-wave, as well
as the TRS breaking sþ id-wave. The s- and sþ id-wave
pairing regimes are gapped except at some critical lines and
points, respectively [101], while the d-wave pairing regime
corresponds to a nodal superconducting phase, since it
cannot open a bulk gap. Moreover, the TRS preserving
gapped s-wave pairing belongs to the symmetry class DIII
characterized by a Z2 invariant ν [102,103] and the TRS
preserving gapless d-wave pairing is considered as a
topologically nontrivial phase, though gapless, because it
harbors topologically protected gapless Majorana modes on
the boundary.
Let us now focus on the interesting regime with sþ id-

wave pairing, which consists of three TRS breaking
topologically distinct phases, including first- and second-
order TSC and topologically trivial SC, as shown in the
blue color region of Fig. 1. Since the TRS is broken in this
regime, the system belongs to the symmetry class D
characterized by the Chern number [104]. To reveal the
underlying topological property in a simple and transparent
way, here we perform a basis transformation that maps the
combination of SOC and even-parity sþ id-wave pairing

to an effective odd-parity pairing [37]. After the trans-
formation (see Supplemental Material [100]), the four-band
BdG Hamiltonian can be decoupled into two independent
parts, i.e., HðkÞ ¼ HþðkÞ ⊕ H−ðkÞ, with

H�ðkÞ ¼
� jξkj � lðkÞ Δ�ðkÞ

Δ�
�ðkÞ −jξkj ∓ lðkÞ

�
; ð13Þ

where Δ�ðkÞ ¼ ½Δ0 þ ΔsηsðkÞ ∓ iΔdηdðkÞ�ðlx ∓ ilyÞ=
lðkÞ. It is apparent that Δ�ð−kÞ ¼ −Δ�ðkÞ, confirming
the odd-parity nature. As is known, the band topology of an
odd-parity superconductor is determined by the relative
configuration of the FSs and the pairing nodes, and there
exists a simple relation between the Chern number (C) and
the number of FSs (NF) enclosing one time-reversal
invariant point, which is ð−1ÞC ¼ ð−1ÞNF [26,105]. The
number of FSs ofHðkÞmust be even since the normal state
has TRS, which implies that C must be an even integer. In
addition, the gapped energy spectra of HþðkÞ implies the
absence of a FS, which is defined as the constant-energy
contour satisfying jξkj þ lðkÞ ¼ 0, while H−ðkÞ has either
zero or two FSs, depending on the chemical potential μ. As
the absence of FSs always implies a trivial superconductor,
only the situation that H−ðkÞ has two FSs is of interest.
When C is a nonzero even integer, the system corresponds
to a first-order TSC with C branches of Majorana chiral
edge states. However, when C ¼ 0, the system is either a
topologically trivial superconductor or a second-order TSC,
depending on whether the two FSs of H−ðkÞ can be
continuously deformed to annihilate with each other with-
out crossing any removable Dirac pairing nodes (not at
time-reversal invariant points) or not.
Interestingly, we notice that H−ðkÞ takes a form similar

to the toy model realizing second-order TSC proposed in
Ref. [76]. Here, there are four removable Dirac pairing
nodes whose net sum of winding number [defined as
ω ¼ ð1=2πiÞ H Δ−1

− ∂kΔ−dk, with the closed integration
contour enclosing only the interested pairing node] is zero
lying between the two FSs, the system realizes a second-
order TSC. Another way to understand this picture is via
the edge theory. To be specific, when the four removable
Dirac pairing nodes of H−ðkÞ lie between the two FSs, it
means that, if we neglect the d-wave pairing, the line
nodes of s-wave pairing (satisfying Δ0 þ Δsηs ¼ 0) can be
chosen to lie between the two FSs. Since without the
d-wave pairing, the full Hamiltonian restores the TRS, then
according to the formula ν ¼ Q

i½sgnðΔiÞ�mi [102] we have
ν ¼ −1, indicating the realization of a first-order time-
reversal invariant TSC that hosts a pair of helical Majorana
edge states. Bringing back the d-wave pairing, the helical
edge states are gapped out due to the breaking of TRS.
However, as the d-wave pairing itself has line nodes along
the directions kx ¼ �ky, four Majorana zero modes will be
left at the four corners when we use open-boundary
conditions in both x and y directions [67,69].

FIG. 1. Zero-temperature phase diagram for ft; λR; U; Vg ¼
f1; 0.3; 2;−5g. The phase diagram contains d-wave SC (red color
region), sþ id-wave SC (blue color region), and s-wave SC
(green color region). The time-reversal symmetry breaking
sþ id-wave SC phase consists of three topologically distinct
phases, including first- and second-order TSC and topologically
trivial SC.
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Based on the above analysis, we find that, within the
sþ id-wave pairing regime, the change of topology
only takes place when the FSs cross the removable Dirac
pairing nodes at which both Δ0 þ Δsηs ¼ 0 and Δdηd ¼ 0
are simultaneously fulfilled. As for the parameters consi-
dered, we find Δ0 ≪ Δs;Δd; these nodes are almost fixed
at the four points Q�;� ¼ ð�π=2;�π=2Þ. Therefore, the
condition for topological phase transitions can be very
accurately described by the normal-state condition
jξQ�;�j−lðQ�;�Þ¼0. It is straightforward to find that the

solutions give two straight lines satisfying jμj − 2
ffiffiffi
2

p jλR �
λDj ¼ 0 (see Supplemental Material [100]), which corre-
spond to the two dashed lines in the blue color region
of Fig. 1.
To support the above analysis, we further diagonalize

the mean-field BdG Hamiltonian in real space (see
Supplemental Material [100]). To be specific, we fix λD ¼
0.6 and study the evolution of boundary modes with μ. The
results are presented in Fig. 2. In accordance with the phase
diagram in Fig. 1, we know that μc;1 ≃ 3

ffiffiffi
2

p
=5 ≃ 0.85 and

μc;2 ≃ 9
ffiffiffi
2

p
=5 ≃ 2.55 are two critical points in the regime

with sþ id-wave pairing [100]. Within each phase, we
show one representative configuration of FSs and pairing
nodes [Figs. 2(b)–2(e)]. Figure 2(b) shows that, within the

regime 0 < μ < μc;1, the four pairing nodes at ð�π=2;
�π=2Þ are located between the two concentric FSs enclos-
ing ðπ; πÞ, indicating the realization of a second-order TSC
[76]. To demonstrate this phase, we consider a square
sample with open-boundary conditions in both x and y
directions. A diagonalization of the real-space Hamiltonian
does confirm the existence of four Majorana corner modes
[see Fig. 2(f)] and, therefore, the realization of a second-
order TSC. Within the regime μc;1 < μ < μc;2, only two of
the four pairing nodes at ð�π=2;�π=2Þ remain to be
located between the two FSs, as shown in Fig. 2(c). As
one pairing node takes the same winding number as its
inversion partner, the transition from the configuration in
Fig. 2(b) to that in Fig. 2(c) suggests a change of Chern
number by two. In other words, a first-order TSC with C ¼
2 is realized in the regime μc;1 < μ < μc;2. To demonstrate
this phase, we consider a cylinder geometry with open-
boundary conditions only along the x direction. The
numerical result confirms the existence of two chiral
Majorana modes on each edge [see Fig. 2(g)] and, there-
fore, the realization of a first-order TSC with C ¼ 2.
Remarkably, the above results suggest that a topological
phase transition between second- and first-order TSCs
takes place at μc;1 [106]. Numerical calculations reveal

(a)

(b)

(f) (g) (h) (i)

(c)

(d)
(e)

FIG. 2. Common parameters: ft; λR; λD;U; Vg ¼ f1; 0.3; 0.6; 2;−5g. (a) The dependence of Δ0;s;d on μ at zero temperature. The
dashed lines perpendicular to the μ axis correspond to phase boundaries. The four insets (b)–(e) show four representative configurations
of FSs (black) and pairing nodes (purple points or lines) in the four distinct phases. (b) μ ¼ 0.3, (c) μ ¼ 1.8, (d) μ ¼ 3, and (e) μ ¼ 4 [for
this value, one of the FS becomes a point at ðπ; πÞ]. (f) The probability density profiles of four Majorana corner states (red points of the
inset) and the eigenvalues of the BdG Hamiltonian around zero energy in real space for a 50 × 50 square lattice with open-boundary
conditions in both x and y directions. (g)–(i) Energy spectrum for cylindrical geometry with open-boundary condition only along the x
direction. The inset of (g) shows the distribution of chiral Majorana edge states in real space.
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the absence of gapless boundary modes [Figs. 2(h) and 2(i)]
in the regime μ > μc;2, indicating that the Hamiltonian is
trivial in topology in this regime.
So far, we have restricted the results to the zero-temper-

ature limit. By performing self-consistent calculations at
finite temperature, we find that, for a given configuration of
FSs, different pairing types exhibit different temperature
dependence. As a result, the favored pairing can undergo a
dramatic change at some critical temperature. To be
specific, Fig. 3 shows two examples whose ground states
at zero temperature are second- and first-order sþ id-wave
TSCs. From this figure, it is readily seen that the increase of
temperature leads to a change of the favored pairing from
gapped sþ id-wave TSC to d-wave gapless SC at a
parameter-dependent critical temperature. Since the d-wave
pairing leads to the realization of nodal or Dirac SC, it
indicates that the temperature itself provides a way to tune
the underlying topological properties.
Conclusions.—In this Letter, we showed that both first-

and second-order TRS breaking topological superconduc-
tivity aswell as the topological phase transition between them
can emerge in the extendedHubbardmodelwith bothRashba
and Dresselhaus SOC, even in the absence of an external
magnetic field ormagnetic order.Moreover,wedemonstrated
that, with appropriate FS structure, tuning only the temper-
ature can result in interesting topological phase transitions in
this system. Our findings are relevant to many systems where
both SOCs and interactions are tunable, including InSb [37]
or InGaAs [107] quantum wells in proximity to a high-
temperature iron-based superconductor, which has an order
parameter with sþ id-wave superconducting pairing sym-
metry [108–110], oxide interfaces like LaAlO3=SrTiO3

[111,112], and cold atom systems [113].
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