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An open question in studying normal grain growth concerns the asymptotic state to which micro-
structures converge. In particular, the distribution of grain topologies is unknown. We introduce a
thermodynamiclike theory to explain these distributions in two- and three-dimensional systems. In
particular, a bendinglike energy Ei is associated to each grain topology ti, and the probability of observing
that particular topology is proportional to ½1=sðtiÞ�e−βEi , where sðtiÞ is the order of an associated symmetry
group and β is a thermodynamiclike constant. We explain the physical origins of this approach and provide
numerical evidence in support.
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Introduction.—Theory, simulation, and experimental
work have shown that during normal grain growth poly-
crystalline microstructures evolve toward an asymptotic
state in which scale-invariant properties become constant
[1,2]. It has also been observed that this state is reached
largely independently of initial conditions [3,4]. A major
goal in this field has therefore been to characterize and
understand this universal grain-growth microstructure.
In addition to its geometric features [5–7], its topological
features have also been carefully studied. In two dimen-
sions, grains can be classified by their number of edges
[8–10]. An analogous approach is insufficient in three
dimensions, as grains with the same number of faces can
have distinct topologies. Recent work has focused on
characterizing the types of grain faces [11], the arrange-
ments of those faces [12–16], and the manner in which
edges are arranged in the grain boundary network [17].
Previous studies characterizing the distribution of grain

topologies is limited in two important ways. First, little
connection has been made between two- and three-
dimensional systems; a general theory explaining both is
desirable. Second, despite careful characterization of grain
types that appear and their relative frequencies, an explan-
ation of these observations remains elusive.
This Letter introduces a novel, thermodynamiclike

approach to explain the observed distributions of topologi-
cal types in two- and three-dimensional grain-growth
systems. In particular, we associate a bendinglike energy
to each grain that depends only on its topology, and show
that this energy can help predict the distribution of
topologies in these cellular microstructures.
Theory.—The most basic topological property of a grain

is its number of neighbors. In this Letter, we use the term
neighbors to refer to pairs of grains that share a common

edge or face, in two or three dimensions, respectively.
In two dimensions, the topology of a grain is fully
described by its number of edges, which in most cases
is equal to its number of neighbors (in exceptional cases, a
pair of neighboring grains can share multiple edges). The
arrangement of neighbors in three dimensions, however,
is more complicated. Consider, for example, Fig. 1, which
illustrates two grains, each with eight faces. Although
the grains have identical numbers and types of faces,
differences in the arrangements of those faces indicate
differences in the arrangements of their neighbors.
We say that two grains have the same topological type, or

topology, if their neighbors can be paired so that neighbors
of one grain are themselves neighbors if corresponding
neighbors of the other grain are also neighbors. In two
dimensions, each topological type is identified with a
natural number. In three dimensions, each type is identified
with a graph isomorphism class [12,18].
Thermodynamics.—A central goal of statistical thermo-

dynamics is understanding the distribution of microstates
of a system when only macrostate features are known.
A system of N identical particles confined to a fixed
volume in thermal equilibrium with a surrounding fixed-
temperature heat bath is a classic example, the canonical
ensemble [19]. What are its possible microstates and what
are the probabilities of observing them? In this example,

(a) (b)

FIG. 1. Two grains with eight faces but different topologies.
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the probability density pðωÞ of observing the system in
microstate ω depends only on its energy Eω and a constant
β, commonly understood as an inverse temperature:

pðωÞ ¼ 1

Z
e−βEω : ð1Þ

The partition function Z ¼ ZðβÞ is a normalizing constant
which ensures that p is a probability distribution on Ω, the
set of all possible microstates. The exponential dependence
of probability on energy results from treating the system
and its significantly larger surroundings as an isolated system
with fixed energy, and in which all possible microstates are
equally probable [20].
These concepts may not initially appear relevant to grain

growth for several reasons. First, unlike in classical statistical
mechanics, the energy defined below is not a conserved
quantity—the total energy of an isolated system changes
with time. Second, whereas β is traditionally interpreted as
an inverse temperature, temperature has no obvious physical
interpretation in studying the scale-invariant statistical
properties of steady-state grain-growth microstructures.
We nevertheless suggest that grain growth be considered in
this thermodynamic spirit. In particular, we treat each grain
as a separate thermodynamic system whose microstate is
described by an energywritten solely in terms of its topology.
The probability of a grain having a given topology is then
postulated to depend on this energy in a form similar to
Eq. (1). We ask that lack of a priori justification for this
approach be momentarily ignored in light of its success in
describing the relevant probability distributions.
Two dimensions.—Although grains in two-dimensional

systems are not regular polygons, we consider them so as
a first-order approximation. Adjacent edges of a regular
n-sided polygon meet at internal angles of αn ¼ π − 2π=n.
Energetic factors in isotropic grain growth, however, cause
edges to meet at angles of θ2 ¼ 2π=3. We therefore define
an energy associated with each vertex of an n-sided face as
the square of the difference between αn and θ2, in a manner
analogous to a conventional elastic energy. The total energy
associated with an n-sided grain is the sum of these
energies over its n vertices:

E2ðnÞ ¼ nðαn − θ2Þ2: ð2Þ

Since each angle of a regular hexagon is α6 ¼ θ2, the
energy associated with the n ¼ 6 topology is zero.
Although microstate energies largely determine their

probabilities, the manner in which microstates are counted
must also be considered. In particular, if neighbors of a
grain are cyclically permuted, or else their order is reversed,
then its topology is unchanged, as pairs of grains are
neighbors after this transformation only if they were
neighbors before it. This identification leads to a corrective
factor of 1=sðtiÞ, where sðtiÞ is the order of the symmetry
group of grain topology ti. This factor is analogous to the

more familiar 1=N! factor that arises in systems of N
indistinguishable particles, described by Eq. (1), which are
invariant under the N! permutations belonging to the
symmetric group of degree N.
In two dimensions, the symmetry group of each regular

n-gon is the dihedral group with order 2n, suggesting the
following probability distribution of n-sided grains:

pðnÞ ¼ 1

Z
e−βE2ðnÞ

2n
; ð3Þ

for some constant β. As mentioned before, we are not aware
of any physical interpretation of β, and regard it as a fitting
parameter.
Figure 2 compares the distribution of grain topologies in

steady-state, two-dimensional normal grain-growth micro-
structures as described by Eq. (3) with data obtained from
prior front-tracking simulations [21,22]. A weighted least-
squares method finds that the data fit the proposed theory
best when β ¼ 1.62 (χ2 ¼ 0.030). While the equation and
the observed values of pðnÞ do not agree exactly, their
similarity in shape suggests that the proposed thermody-
namic approachmight provide a valuable first-order approxi-
mation of the distribution.
Three dimensions.—Our earlier simulations of three-

dimensional grain growth suggested that certain topologies
appear more frequently than others, even among those with
the same number and types of faces [12]. We observed that
“just as curvature flow drives towards geometrically sym-
metric spheres … it also drives towards topologically
symmetric polyhedra.” We now extend the approach
introduced above to analyze three-dimensional systems
and to quantify this topological symmetry.

FIG. 2. Distribution of n-sided grains and faces in two- and
three-dimensional steady-state grain growth [22], respectively,
compared with Eqs. (3) and (5), with β ¼ 1.62 and β ¼ 1.29, for
the two systems. Although these equations are defined only for
integer values, we illustrate them as continuous functions to aid
visualization. Error bars showing standard errors of the mean are
smaller than the data points.
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Distribution of faces.—We first consider grain faces in
three dimensions. Whereas edges in isotropic, two-
dimensional grain growth meet at angles 2π=3, in three
dimensions theymeet at angles θ3 ¼ cos−1ð−1=3Þ ≈ 109.5°.
This suggests defining a bendinglike energy associated with
an n-sided face in three dimensions:

E3ðnÞ ¼ nðαn − θ3Þ2; ð4Þ

analogous to the energy defined in Eq. (2); as before,
αn ¼ π − 2π=n. This energy can be used to estimate the
distribution of faces with n sides in three dimensions:

pðnÞ ¼ 1

Z
e−βE3ðnÞ

2n
: ð5Þ

Figure 2 shows steady-state data collected from isotropic
grain-growth simulations with over 250 000 grains [22,23],
compared with Eq. (5). A weighted least-squares method
finds this equation describes the observed data best when
β ¼ 1.29 (χ2 ¼ 0.009). This prediction fits the data more
closely than Eq. (3) did for two-dimensional systems. Unlike
in two dimensions, in whichE2ð6Þ ¼ 0, in three dimensions,
E3ðnÞ > 0 for all n, and is minimal when n ¼ 5.
Distribution of grain topologies.—Topologically defined

energies can also be used to estimate the distribution of
topological types in three dimensions. We define two such
energies for each grain topology ti. The first is a sum of
Eq. (4) over all F faces of a grain:

EfðtiÞ ¼
XF

j¼1

E3ðnjÞ; ð6Þ

where nj is the number of sides of face j. This energy
extends the one defined for polygonal faces to entire grains.
The probability of a grain with topology ti can then be
estimated by

pðtiÞ ¼
1

Z
e−βEðtiÞ

sðtiÞ
; ð7Þ

where EðtiÞ ¼ EfðtiÞ, and where sðtiÞ is the order of the
associated symmetry group; more details about this sym-
metry group and the algorithm used to calculate its order
can be found in Ref. [24]. The product sðtiÞpðtiÞ is
generally reported in the following to emphasize its
exponential dependence on energy.
Figure 3(a) shows the product sðtiÞpðtiÞ as a function of

Ef for topologies observed in simulations. Those with large
Ef appear infrequently, while those with small Ef may
appear frequently or infrequently. These data suggest that
Eq. (7) reasonably approximates the distribution of grain
topologies.
Although Ef quantifies the energetic favorability of

each grain topology, it depends only on the types of faces
of a grain, but not on how those faces are arranged. Such
information, however, might yield a more accurate estimate
of the distribution of topologies. For example, the two
topologies illustrated in Fig. 1 have the same number and
types of faces, and hence Ef values, yet the topology
illustrated in Fig. 1(a) appears nearly 100 times more
frequently than that illustrated in Fig. 1(b).
We therefore define a second energy to quantify how

curvature is distributed over grain vertices. If three regular
n-sided polygons meet at a vertex v, then the Gaussian
curvature concentrated at that vertex is Kv ¼ 2π −
ðαn1 þ αn2 þ αn3Þ, where nj is the number of sides of face
j. If we approximate each face as a regular polygon, then
Kv approximates the actual curvature in purely topological
terms. In isotropic grain growth, however, the Gaussian
curvature at each vertex is K̂ ¼ 2π − 3θ3, where θ3 ¼
cos−1ð−1=3Þ. We then define the energy at each vertex as
the square of the difference between these curvatures, and
define the total energy EvðtiÞ of topology ti as a sum of
these energies over its V vertices:

(a) (b)

FIG. 3. The product of the observed probability pðtiÞ and the symmetry group order sðtiÞ as a function of energies (a) Ef and (b) Ev for
each observed topology ti, as suggested by Eq. (7). Data are taken from three-dimensional front-tracking simulations of steady-state
grain growth [22,23].
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EvðtiÞ ¼
XV

j¼1

ðKvj − K̂Þ2: ð8Þ

Two grains with the same number and types of faces will
generally have identical Ef but different Ev.
Figure 3(b) shows sðtiÞpðtiÞ as a function of Ev for each

observed grain topology. Grains with large Ev appear
infrequently, while those with low Ev can appear frequently
or infrequently. In contrast to Fig. 3(a), the predicted
probabilities are more scattered.
We next consider the relationship between Ef, Ev, and

sðtiÞpðtiÞ when restricted to grains with fixed numbers of
faces. For each fixed number of faces, we use a weighted
least-squares method to fit data to a curve of the form
sðtiÞpðtiÞ ¼ ð1=ZÞe−βEðtiÞ. Figure 4 shows data for types
with 12, 13, and 14 faces. These data suggest that Ef, Ev,
and sðtiÞ can be used to more accurately estimate the
distribution of types when restricted to fixed number of
faces. The only notable outlier appears in Fig. 4(f) for a
point with Ev ≈ 0, which appears less frequently than
predicted. This point represents the truncated octahedron,
which appears only once in the grain-growth simulation
dataset.
Finally, we consider sets of grain topologies with

identical numbers and types of faces, but in which those
faces are arranged differently, thus providing multiple Ev
values for fixed Ef. Figure 5 shows three such datasets,
chosen because of their high number of samples of multiple
topological types. In each set, increasing values of Ev

are clearly associated with an exponential decrease in
sðtiÞpðtiÞ, suggesting that Ev and Ef together provide a
more accurate prediction of probability than does Ef

alone. Specifically, grain topologies in which faces meet
in unfavorable ways, as characterized by Ev, appear orders
of magnitude less frequently than other topologies con-
structed from identical sets of polygonal faces.
Conclusions.—The most surprising finding of this work

is the ability of a topologically defined “energy” to predict
the distribution of grain topologies in steady-state, isotropic
grain growth. The similarity between the forms of the
energies and distributions in two and three dimensions
suggests a common factor governing their behavior. These
energies can be understood as measuring the deviation of
realistic grains and their geometries from ideal ones in
topological terms.
The relationship between topologically defined energy,

symmetry, and probability is reminiscent of the classical
statistical mechanics approach toward analyzing equilib-
rium systems. Although grain-growth microstructures are
not equilibrium systems, their steady-state properties pro-
vide a similar setting for this kind of analysis [25].
In particular, the existence of an asymptotic state in which
scale-invariant properties are statistically constant implies
that once dimensional factors are scaled out, microstructure
is determined by an energy minimization principle. This is
not unusual in systems for which there are large disparities
in timescales of different processes; here, the overall
coarsening of the microstructure can be considered as
“slow” while the topological or scale-free microstructural

(a) (b) (c)

(d) (e) (f)

FIG. 4. The product of the observed probability pðtiÞ and the symmetry group order sðtiÞ as a function of (a)–(c) Ef and of (d)–(f) Ev
for each observed topology ti with fixed numbers of faces. Probabilities pðtiÞ are normalized so that they sum to 1 for each number of
faces. Dashed curves show 5 standard deviations of the sample mean for the relevant sample size. Data are taken from simulations of
three-dimensional steady-state grain growth [22,23].
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evolution is “fast.” Hence, late-time evolution of grain
growth can be described using a microstructural Born-
Oppenheimer approximation.
While the energies suggested here can be thought of as

approximating bending energies, other topologically defined
energies might also be considered. For example, a twisting
energy can be defined along grain edges to quantify the strain
resulting from differences in face arrangements at alternate
ends. Further, while the context of the current study is grain
growth in polycrystalline metals, the suggested approach
may find application in understanding data collected in
studies of polyhedra-shaped cells in other systems, such
as bubbles in soap foams [26] and polyhedrocytes in blood
clots and thrombi [27].
Finally, the approach introduced in this Letter might be

compared with that recently proposed by Lutz et al. [14].
In both, an energy is defined in purely topological terms
to capture the favorability of each topological type, and
is then used to estimate its probability. One strength of
the approach suggested here is its connection to classical
statistical mechanics and its exponential relationship
between energy, symmetry, and probability.
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