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The role of nonadiabatic electrons in regulating the hydrogenic isotope-mass scaling of gyrokinetic
turbulence in tokamak fusion plasmas is assessed in the transition from ion-dominated core transport
regimes to electron-dominated edge transport regimes. We propose a new isotope-mass scaling law that
describes the electron-to-ion mass-ratio dependence of turbulent ion and electron energy fluxes. The mass-
ratio dependence arises from the nonadiabatic response associated with fast electron parallel motion and
plays a key role in altering—and in the case of the DIII-D edge, favorably reversing—the naive gyro-Bohm
scaling behavior. In the reversed regime hydrogen energy fluxes are larger than deuterium fluxes, which is
the opposite of the naive prediction.
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Introduction.—Understanding the scaling of plasma
energy confinement time as a function of hydrogenic
isotope mass is an important theoretical challenge for
fusion research. Whereas most tokamak experiments oper-
ate with deuterium as the main ion species, fusion reactors
will use a 50∶50 deuterium-tritium fuel composition to
increase the thermonuclear reaction cross section. The
initial commissioning of ITER [1] calls for three phases
of isotope operation: (1) dominant-hydrogen operation,
(2) dominant-deuterium operation, and finally (3) deu-
terium-tritium operation. Thus, establishing a theoretical
framework for transport scaling with plasma ion compo-
sitions ranging from hydrogen (H) to deuterium (D) to
deuterium-tritium (DT) will be of significant value in
planning the ramp-up stages to reactor-level operation.
Experiments in present-day tokamaks generally find an

increase in the global energy confinement time with
increasing hydrogenic isotope mass [2–4]. This favorable
scaling contradicts simple theoretical arguments, and is a
long-standing problem known as the isotope effect. Some
theoretical mechanisms have recently been demonstrated to
explain these disagreements (e.g., collisions [5], E × B
flow shear [6], electromagnetic fluctuations [6,7], and
kinetic electrons [8–11]), but no general theoretical frame-
work to explain these discrepancies has been proposed. In
this Letter, we present such a theoretical framework for
understanding the role of the nonadiabatic electron drive in
the isotopic dependence of turbulent plasma transport,
which is responsible for most thermal and particle loss
in magnetically confined plasmas. In doing so, we quantify
the dependence of energy transport on the electron-to-ion
mass ratio me=mi and its role in altering the ion-mass
scaling of the turbulent flux from the core to the edge.
Naive gyro-Bohm scaling.—For clarity and to avoid

nonessential physical mechanisms, we restrict our attention
to a pure plasma ne ¼ ni ¼ n0 with equal temperature

Te ¼ Ti ¼ T0. Dimensional analysis, based solely on the
ion gyrokinetic equation [12] (and using the ion gyroradius
as the characteristic length scale), predicts that the turbulent
ion energy flux scales as

Qi ¼ c0QGBi where QGBi ¼ QGBD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=mD

p
: ð1Þ

Here, the subscript i is the ion species index, QGBD ≐
n0T0vDρ2�D is the deuterium gyro-Bohm energy flux,
vD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T0=mD

p
is the deuterium thermal velocity,

ρ�D ¼ ðvD=ΩD;unitÞ=a is the deuterium ion-sound gyrora-
dius normalized by the system size, and ΩD;unit ¼
eBunit=ðmDcÞ is the deuterium cyclotron frequency. In this
limit, c0 is species independent (depending only on the
density and temperature gradients, magnetic equilibrium
geometry, etc.) and Eq. (1) predicts that the turbulent ion
energy flux scales with the square root of the ion mass, such
that QH < QD < QDT. This implies that the global energy
confinement degrades with increasing ion mass, in contra-
diction with the general experimental trend.
This simple scaling—which we hereafter refer to as the

naive gyro-Bohm scaling—is based on the physically
unrealistic assumption of adiabatic electrons. When kinetic
electron dynamics are properly retained in the gyrokinetic
turbulence analysis, we expect the more complicated
scaling,

Qi ¼ c̃0ðme=miÞQGBi; ð2Þ

where the function c̃0 can have a strong dependence on
mass ratio [8,11] in addition to all other dimensionless
plasma parameters. In what follows, using nonlinear
gyrokinetic turbulence simulations based on a DIII-D
discharge, we illustrate a remarkable transition in the
isotope mass scaling caused by the nonadiabatic response
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of electrons. This nonadiabatic response strongly regulates
the turbulence levels and can in some cases (particularly in
the plasma edge) dominate and favorably reverse the naive
scaling so that QH > QD > QDT, in agreement with the
experimental trend.
Core-to-edge validation of energy flux.—To establish an

experimentally credible baseline scenario, we consider
DIII-D discharge 173147 at t ¼ 1705 ms, a low-power
Ohmically heated L-mode (low-confinement mode) deu-
terium plasma [13] at high density. Gyrokinetic simulations
of the turbulent energy flux were carried out with the
CGYRO code [14] over the range 0.6 ≤ r=a ≤ 0.9. CGYRO
solves the δf nonlinear gyrokinetic-Maxwell equations
[12,15] using an Eulerian numerical scheme. In the
simulations, the previously stipulated approximations are
used, namely, a pure plasma with equal ion and electron
temperatures. The experimental temperature gradient scale
lengths are retained, while d ln ni=dr ¼ d ln ne=dr based
on quasineutrality. Shaped Miller geometry [16] is used,
and collisions are included using the Sugama collision
operator [17]. Electromagnetic fluctuations and rotation
are retained, though these have only a minor influence.
For the numerical resolution, the simulations use a box
with perpendicular lengths Lx ¼ Ly ∼ 90ρi with Nr ¼ 324

radial modes and Ny ¼ 16 complex toroidal modes,
resolving up to kθρi ¼ 1.
Power-balance (target) energy fluxes are computed from

the transport code TGYRO [18] using the experimental
power and density sources. Despite the approximations,
Fig. 1 shows that CGYRO matches the total (ionþ electron)
experimental power-balance flux over a broad radial
range, in both the ion-dominated core ðr=a ≤ 0.8Þ,
where Qe ∼ 0.7Qi, and in the electron-dominated edge
(r=a ∼ 0.9), where Qe ∼ 1.5Qi. We have verified that

the dominant linear instability in the core is an ion-
temperature-gradient (ITG) mode, whereas in the edge it
is an electron-temperature-gradient-driven trapped-electron
mode (TEM).
Violation of naive scaling.—Figure 2 compares the

simulated deuterium ion energy fluxes against hydrogen
(mH=mD ¼ 0.5) and against 50∶50 DT (treated as a single
species with mDT=mD ¼ 1.25), with all other experimental
equilibrium profile parameters fixed. In the ITG-dominated
regime we observe QH ∼QD ∼QDT, suggesting that
the naive gyro-Bohm scaling is broken (the fluxes have
negligible mass dependence). In the TEM-dominated
regime, a significant reversal from the naive scaling is
found, with QH ≫ QD ≫ QDT. This implies that the
hydrogen confinement relative to deuterium is significantly
worse than expected by the naive mass scaling, whereas the
DT scaling is better than expected. The electron energy
fluxes (not shown) notably follow the ion-mass scaling of
the ion fluxes. In what follows, we will examine these
results more closely and propose an explicit form for the
finite-me=mi corrections to Eq. (1).
Finite electron-mass dynamics.—The electron-mass

dependence of the turbulent flux enters in five physically
distinct ways: the electron parallel motion, electron-ion
collisions, plasma rotation, electromagnetic fluctuations,
and finite electron Larmor radius (FLR). For simplicity we
neglect the latter two (electromagnetic and FLR) which we
have verified do not play a critical role in the present
discharge. To understand the origins of gyrokinetic isotope
scaling in connection with the remaining terms—parallel
motion, collisions, and rotation—we write the ion and
electron gyrokinetic equations in dimensionless form:

∂Hi

∂τi þ
uk
qR

∂Hi

∂θ ¼ GiðHi;Φ;pÞ; ð3Þ

FIG. 1. Total energy flux (Qe þQD) comparing CGYRO turbu-
lence simulations with experimental DIII-D power balance.
The rapid increase at r=a ¼ 0.9 (note the log scale) is driven
by nonadiabatic electron physics and is highly sensitive to the
electron-to-ion mass ratio, and also to the safety factor q.

FIG. 2. Nonlinear ion energy flux comparing hydrogen, deu-
terium, and 50∶50 DT plasmas. Note that the normalization has
fixed deuterium gyro-Bohm units. A favorable reversal of the
naive scaling, Eq. (1), is observed in the TEM-dominated edge.
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∂He

∂τi þ
ffiffiffiffiffiffi
mi

me

r
uk
qR

∂He

∂θ ¼ GeðHe;Φ;pÞ; ð4Þ

where τi ¼ ðvi=aÞt is the time normalized to the ion-sound
timescale, uk ¼ vk=vi, andR is a dimensionless geometric
factor that reduces to the normalized major radius R=a in a
circle. Hi and He are the nonadiabatic ion and electron
distributions [14] and Φ ¼ eϕ=T0 is the short-wavelength
electrostatic potential. The terms Gi and Ge represent the
totality of remaining terms in the equations—none of
which have explicit electron-to-ion mass-ratio dependence.
In writing these terms we ignore a very weak dependence of
Gi on He, and Ge on Hi, from the collision operator.
Importantly, we have introduced a vector p of dimension-
less parameters that are considered to be independent of
the electron-to-ion mass ratio:

p ¼
�
q; s; ϵ; κ; κ0;…; ðgeometryÞ

Te

Ti
;
a
LTe

;
a
LTi

;…; ðprofileÞ
aγE
vi

;
aγp
vi

;…; ðrotationÞ
aνee
vi

;
aνei
vi

;…

�
ðcollisionsÞ; ð5Þ

where 1=LTa ≐ −d lnTa=dr is the inverse temperature
gradient scale length, νee ≐

ffiffiffi
2

p
πe4ne lnΛ=ðm1=2

e T3=2
e Þ is

the electron collision rate, γE≐−ðr=qÞdω0=dr is theE × B
shearing rate, γp ¼ −Rdω0=dr, and ω0 is the toroidal
rotation frequency. When writing the equations in this
form, there is only a single irreducible term—the electron
parallel motion—that can be responsible for ion-mass
dependence of Qi=QGBi. In other words, when held
constant in ion units, the apparent dependence of collisions
and rotation on mass ratio is removed.
In the limit me=mi → 0 (sometimes called the zero-

electron-mass limit [19]) the solution of Eq. (4) is the
bounce-averaged distribution hHeib [20,21]. We remark
that hHeib is associated with trapped electrons only,
and is independent of me=mi and therefore cannot modify
the naive scaling. Corrections to this limit are formally
obtained by expanding the nonadiabatic part of the electron
distribution as an asymptotic series in the small parameter
ω=ωbe [20,22], where ωbe is the electron bounce frequency.
Along these lines, we introduce the related but explicit
ordering parameter

ε ≐ qR
ffiffiffiffiffiffi
me

mi

r
: ð6Þ

Although an asymptotic solution is completely intractable
in the general case, we can nevertheless follow the

arguments of Ref. [23], and posit that the electron dis-
tribution admits the following series expansion:

He ¼ hHeib þ εHð1Þ
e þ ε2Hð2Þ

e þ � � � : ð7Þ

In this expression, the correction terms HðnÞ
e contain both

trapped and passing electron contributions. This form of
the solution suggests that the ion and electron energy fluxes
have the form

Qi

QGBi
¼ c0ðpÞ þ c1ðpÞεþ c2ðpÞε2 þ � � � ; ð8Þ

Qe

QGBi
¼ d0ðpÞ þ d1ðpÞεþ d2ðpÞε2 þ � � � ; ð9Þ

where cjðpÞ and djðpÞ are functions of all system param-
eters except the electron-to-ion mass ratio. When expressed
in terms of fixed (deuterium) gyro-Bohm units, the series
for Qi yields

Qi

QGBD
¼ c0

ffiffiffiffiffiffiffi
mi

mD

r
|fflfflfflffl{zfflfflfflffl}

naive
gyro-Bohm

þc1qR
ffiffiffiffiffiffiffi
me

mD

r
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

weak
nonadiabatic

þc2ðqRÞ2 meffiffiffiffiffiffiffiffiffiffiffiffi
mimD

p
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

strong
nonadiabatic

; ð10Þ

with an analogous equation for Qe. In our experience the
mass dependence is always monotonically increasing,
meaning that all cj and dj are positive. Thus, reversal
from naive gyro-Bohm mass scaling can occur when finite-
me=mi corrections from the strong nonadiabatic terms
dominate.
Numerical verification of scaling behavior.—To explore

the validity of the semiempirical scaling law in Eq. (10), we
follow the strategy of Ref. [23] and introduce a fictitious
scaling parameter λ that divides the parallel motion term in
the electron equation:

∂He

∂τi þ 1

λ

ffiffiffiffiffiffi
mi

me

r
uk
qR

∂He

∂θ ¼ GeðHe;Φ;pÞ: ð11Þ

By adjusting λ we can control the size of the nonadiabatic
correction; that is, λ → 0 corresponds to the (bounce-
averaged) naive gyro-Bohm limit. In the discussion that
follows, the reader can think of increasing λ as increasingffiffiffiffiffiffi
me

p
in the parallel motion only. We can confirm the

qualitative validity of the scaling law in Eq. (10) by looking
more closely at the edge parameters at r=a ¼ 0.9,
as shown in Fig. 3. In the weakly collisional limit
[ν̄e≐ða=viÞνee¼0.01] the values of ðc0; c1Þ and ðd0; d1Þ
are maximized. The vertical-axis intercepts for Qe in
Fig. 3(a) and Qi in Fig. 3(b) indicate that c0 ∼ 90 and
d0 ∼ 150. These intercepts correspond to the naive gyro-
Bohm limit obtained at zero electron mass (λ ¼ 0).
The second term in Eq. (10), referred to as the weak
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nonadiabatic effect, is independent of ion mass (when
fluxes are expressed in mass-independent, fixed units). This
term is illustrated by the parallel increase of the D and H
curves in Fig. 3. In fixedQGBD units, the weak nonadiabatic
term increases the flux by a constant amount that does not
depend on ion mass. As such it cannot produce reversal
from the naive gyro-Bohm scaling. Finally, as λ is increased
further, the increase in flux becomes stronger than linear
and the scaling enters the strong nonadiabatic regime, as
expressed by the third term in Eq. (10), where reversed
gyro-Bohm scaling (QH > QD) is observed. We emphasize
that the third term is only illustrative—we expect that
the asymptotic series diverges in the strong nonadiabatic
regime.
We remark that omitting λ from the ky ¼ 0 (zonal)

electron equation makes no significant difference to the
simulated fluxes. In fact, it has been verified that the ratio
of the nonzonal fluctuating potential to the zonal-flow

potential is nearly independent of λ in Fig. 3 and ion species
in Fig. 2. This feature of the fluctuations was analyzed in
Ref. [23], demonstrating that zonal flows do not play a
significant role in the mass-scaling behavior.
We observe that the trends just described in the weakly

collisional case are preserved as ν̄e is increased, but become
more difficult to measure as the values for ðc0; c1Þ and
ðd0; d1Þ drop. This drop is expected since collisions rapidly
stabilize the TEM linear drive and thus the turbulent flux.
Nevertheless, even when collision rates are increased by a
factor of 170 (ν̄e ¼ 1.7 in Fig. 3), and gyro-Bohm and weak
nonadiabatic contributions are dramatically reduced, the
relative flux enhancements seen in the strong nonadiabatic
regime do not seem to be reduced. Furthermore, this
analysis indicates that the experimental (D) operating point
appears to be in the strong nonadiabatic regime, consistent
with the original finding of Fig. 2. At fixed plasma
gradients, the nonadiabatic effect is strongly enhanced at
increased q and thus dominates in the plasma edge. Overall
we claim that the high levels of energy flux observed in
the L-mode edge are the result of strong nonadiabaticity of
electrons that violates the naive gyro-Bohm scaling expect-
ation. For this reason, it is unlikely that fluid or even
bounce-averaged electron models will correctly describe
edge isotope scaling.
The finite electron-mass correction is weaker in the core,

where q is low and the driving gradients are small. This is
shown in Fig. 4 for simulations at r=a ¼ 0.7. At this radius,
the nonadiabatic contribution (green shading) is dominated
by the weak term and comprises only 25% of the total ion
flux (for hydrogen). Despite some correction to the naive
scaling, it is still observed that QH < QD < QDT. No
reversal (as in the edge region in Fig. 2) is apparent.
The dominant violation of the naive scaling at r=a ¼ 0.7,

FIG. 3. Nonlinear (a) electron and (b) ion energy flux in the
edge at r=a ¼ 0.9 comparing deuterium and hydrogen plasmas
versus the (artificial) scaling parameter λ [see Eq. (11)] for the
electron parallel motion. Naive gyro-Bohm scaling is recovered
as λ → 0. As λ increases, the turbulence transitions from a weakly
nonadiabatic regime (QH < QD) fit to Eq. (10) to first-order (gray
dashed lines) to a strongly nonadiabatic regime (QH > QD)
where the finite-me=mi corrections drive a reversal of the naive
gyro-Bohm scaling.

FIG. 4. Nonlinear ion energy flux in the ITG-dominated core at
r=a ¼ 0.7 comparing hydrogen, deuterium, and 50∶50 DT
plasmas. Shown are the components of the flux due to the naive
gyro-Bohm scaling (yellow) and the weak nonadiabatic contri-
bution (green). Also shown (in blue) is the Nakata-Garcia effect
that arises from keeping the collision and shearing rates fixed in
absolute units. When these shearing rates are kept fixed in ion
units, as in Eq. (5), the Nakata-Garcia effect vanishes.
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which gives rise to QDT ∼QD ∼QH as observed in Fig. 2,
is due to electron collisions, which more strongly stabilize
heavier ions (at fixed ν̄e) [5]. A secondary stabilization
mechanism is the E ×B flow shear, which more strongly
quenches turbulence for heavier species (at fixed γE) [6].
We refer to the sum of these two apparent isotope effects as
the Nakata-Garcia effect. But, as observed earlier in Eq. (5),
when collision and rotation shearing rates are rescaled with
respect to the main ion timescale a=vi, the Nakata-Garcia
mass dependence (shown as the blue shaded bars in Fig. 4)
is eliminated, leaving only the irreducible nonadiabatic
correction to the ion flux.
Summary.—In this Letter we have proposed a new

isotope-mass scaling law, Eq. (10), that describes the
electron-to-ion mass ratio dependence of ion and electron
energy fluxes in both ion-dominated core and electron-
dominated edge transport regimes. The key findings are as
follows. (1) me=mi dependence arises from the nonadia-
batic response associated with fast electron parallel motion.
(2) Nonadiabatic electron drive strongly regulates the
turbulence levels and plays a key role in altering—and
in the case of the DIII-D L-mode edge, reversing—naive
gyro-Bohm scaling. (3) The finite electron-mass correction
is larger for light ions and higher q so that, while it is weak
in the core, it dominates the mass scaling in the edge.
For assessing the isotope scaling of global energy

confinement in a reactor, it is essential to treat the electron
parallel dynamics exactly. Fluid and/or bounce-averaged
electron models [19,24] are unlikely to recover the correct
ion-mass scaling. For a full transport analysis, additional
influences (e.g., impurities, heating, magnetohydrody-
namic activity) beyond the scope of this work must also
be considered [25,26]. However, plasma confinement is
known to be sensitive to edge conditions. Tokamak L-mode
edge conditions typically lead to electron transport-
dominated turbulence regimes such as studied here, for
which the nonadiabatic electron drive is enhanced, result-
ing in a favorable reversal of the simple gyro-Bohm scaling
with ion mass from H to D to DT. This has implications
for lowering the power threshold for the L-mode (low-
confinement mode) to H-mode (high-confinement mode)
transition in a reactor like ITER, consistent with exper-
imental observations comparing hydrogen and deuterium
plasmas [27,28], and could trend the theoretical turbulent-
based global energy confinement isotope scaling toward
agreement with experimental observations.
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