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We study the Lagrangian trajectories of statistically isotropic, homogeneous, and stationary divergence-
free spatiotemporal random vector fields. We design this advecting Eulerian velocity field such that it gets
asymptotically rough and multifractal, both in space and time, as it is demanded by the phenomenology of
turbulence at infinite Reynolds numbers. We then solve numerically the flow equations for a differentiable
version of this field. We observe that trajectories get also rough, characterized by nearly the same Hurst
exponent as the one of our prescribed advecting field. Moreover, even when considering the simplest
situation of the advection by a fractional Gaussian field, we evidence in the Lagrangian framework
additional intermittent corrections. The present approach involves properly defined random fields, and asks
for a rigorous treatment that would explain our numerical findings and deepen our understanding of this
long lasting problem.
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A powerful and physically insightful way to characterize
many dynamical systems, such as those encountered in
fluid mechanics, consists in studying the path lines XðtÞ of
a given advecting field uðx; tÞ, at the position x ∈ Rd and
time t > 0, defined by

dXðtÞ
dt

¼ uðXðtÞ; tÞ: ð1Þ

In the context of fluid turbulence, where the velocity field u
is governed by the Navier-Stokes equations, such
Lagrangian trajectories of fluid particles have been exten-
sively studied in laboratory and numerical flows [1–13]. In
this situation, the three-dimensional Eulerian advecting
flow u is incompressible (i.e., divergence free) and exhibits
a complex multiscale structure in both space [14] and time
[15]. In particular, in the fully developed turbulent regime
concerning the asymptotic limit of infinite Reynolds
numbers, u gets rough (i.e., nondifferentiable) in both
space and time, and characterized in a statistically averaged
sense by a Hurst exponent of order HEul ≈ 1=3. In the
phenomenology of turbulence mostly developed by
Kolmogorov [16], this can be broadly understood on
dimensional grounds if it is assumed that the average
dissipation by unit of mass remains finite at infinite
Reynolds numbers [14]. Similarly, the Lagrangian velocity
vðtÞ≡ uðXðtÞ; tÞ, i.e., the velocity of a tracer advected by
the flow u, develops small scales such that it gets rough and
characterized by a Hurst exponent of order HLag ≈ 1=2.
Again, under the same assumption, this exponent can be
obtained from dimensional arguments, and says that

Lagrangian velocity has the same regularity as the one
of a Brownian motion [15].
Whereas it remains elusive to derive these behaviors

from first principles, we propose in this Letter to study the
statistical properties of Lagrangian trajectories extracted
from a prescribed advecting velocity field that reproduces
some of the main aforementioned features of turbulence.
A similar approach has been already explored for various
random vector fields [17–21], although, as we will see, our
advecting flow is more general, in particular concerning
possible intermittent corrections.
In order to draw the simplest and numerically tractable

picture of these phenomena, we need to come up with a
proposition for the prescribed advecting velocity field
uðx; tÞ. Recall that we want it to be divergence free at
any time to ensure statistical stationarity of induced
Lagrangian velocities [22]. For this reason, we will con-
sider henceforth a two-component vector field u ¼ ðu1; u2Þ
living in a two-dimensional space x ¼ ðx1; x2Þ ∈ R2 and
for t ∈ R, such that ∇ · u ¼ 0 at any time. In an asymptotic
regime, mimicking the behavior of turbulence at infinite
Reynolds numbers, this vector field is eventually rough,
governed in a statistically averaged sense by a Hurst
exponent H ∈�0; 1½ (taken to be 1=3 as far as turbulence
is concerned). A first step in this direction would be to
consider fractional Gaussian fields, defined as linear
operations on a space-time white noise (similarly to the
approach developed in [23–27]), regularized over a small
parameter ϵ > 0 ensuring differentiability in both space and
time (compatible in particular with the divergence-free
condition). Going beyond this Gaussian framework, we
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would like also to consider some intermittent (i.e., multi-
fractal) corrections [14], and to explore their implication
on the statistical behavior of Lagrangian trajectories. To
make our notations lighter, without loss of generality, we
consider in the sequel nondimensional space and time
coordinates.
Along these lines, the simplest random vector field that

we have in mind, which is statistically stationary, isotropic,
and homogeneous, and which reproduces these statistical
behaviors, is given by

uðx;tÞ¼
Z
y∈R2;s∈R

Gϵ;HEul
ðx−y;t−sÞMϵ;γEulðd2y;dsÞ; ð2Þ

where the vector kernel Gϵ;HEul
acting linearly on the

random measure Mϵ;γEul (specified later) reads

Gϵ;HEul
ðx; tÞ ¼ φðx; tÞ x⊥

jjx; 0jjϵ
jjx; tjjHEul−3=2

ϵ ; ð3Þ

with jjx; tjj2ϵ ¼ jxj2 þ t2 þ ϵ2 a regularized spatiotemporal
norm over ϵ and x⊥ ¼ ð−x2; x1Þ. Note that we implicitly
assume that in our nondimensional reference frame, the
small scale ϵ plays the role of both the spatial and temporal
dissipative scales. This is consistent with the similar
dependence of the so-called Kolmogorov length scale ηK
and the sweeping timescale [15] on the Reynolds number.
The scalar cutoff function φ ensures that this field has a
finite variance. It goes smoothly to zero as jxj gets of the
order of the integral length scale L and/or t of the order of
the integral timescale T. Once expressed in our nondimen-
sional coordinate system, we take L ¼ T and assume
φðx; tÞ ¼ exp f−½ðjxj2 þ t2Þ=2L2�g. The very form of the
kernel G [Eq. (3)] is inspired by the two-dimensional
Biot-Savart law [28], and ensures that the velocity field
[Eq. (2)] is divergence free for any finite ϵ > 0 and at any
time. Additional technical details are provided in [29].
The random spatiotemporal measure Mϵ;γEul reads

Mϵ;γEulðd2y; dsÞ ¼ eγEulYϵðy;sÞ−γ2EulhY2
ϵiWðd2y; dsÞ; ð4Þ

where W is a spatiotemporal Gaussian white noise (thus
2þ 1 dimensional) and Yϵ a zero-average scalar Gaussian
random field, logarithmically correlated in both space and
time as ϵ → 0, taken as independent of W. As we will see,
the parameter γEul governs entirely the intermittent correc-
tions, and Mϵ;γEul can be viewed as a continuous, sta-
tistically homogeneous and stationary version of the
discrete cascade models [32–34]. Being Gaussian, the
scalar field Yϵ can be obtained as a linear operation on
an independent white noise W̃, that is Yϵðx; tÞ ¼
ð1= ffiffiffiffiffiffi

4π
p Þ Ry;sHϵðx − y; t − sÞW̃ðd2y; dsÞ with Hϵðx; tÞ ¼

jjx; tjj−3=2ϵ 1jxj2þt2≤L2 and 1S the indicator function of the
set S.

Using similar technics as in Refs. [23–27], in particular
calling for stochastic calculus methods developed for
multiplicative chaos theory [35], it can be shown that
the velocity field u [Eq. (2)] is rough in the limit of
vanishing regularizing scale ϵ → 0, such that for instance
the moments of the longitudinal velocity increments
δlu1ðx; tÞ ¼ u1ðx1 þ l; x2; tÞ − u1ðx1; x2; tÞ (i.e., the struc-
ture functions) behave for q ≥ 1, HEul ∈�0; 1½ and
γ2 ≤ HEul=ðq − 1Þ, as

lim
ϵ→0

hðδlu1Þ2qi ∼
l→0þ

C2q;HEul;γEull
2qHEul−2qðq−1Þγ2Eul ; ð5Þ

where the multiplicative factor C2q;H;γEul is finite and
positive. The scaling behavior entering in Eq. (5) indicates
that u [Eq. (2)] is intermittent and exhibits a quadratic (i.e.,
log-normal) spectrum. The respective transverse (i.e., the
scale l is taken along the second direction) and temporal
(i.e., we look at the increment over a time τ at a fixed
position) structure functions behave similarly as in Eq. (5),
with the same spectrum of exponents but with different
multiplicative constants. More general spectra than the
quadratic one could be considered [35–38], although
calculations leading to the exact asymptotic result Eq. (5)
get more intricate, and the quadratic spectrum reproduces a
convincing phenomenology of intermittency at low stat-
istical orders.
Numerical simulations of u [Eq. (2)] are performed in a

(2þ 1)-dimensional periodic box of unit length and dura-
tion using N ¼ 211 collocations points in each direction,
such that dx ¼ dt ¼ 1=N. Convolutions of the determin-
istic functions Gϵ;H [Eq. (3)] and Hϵ [i.e., the kernel of Yϵ

entering in Eq. (4)] with two independent instances W and
W̃ of variance dx2dt of the white noise are computed in an
efficient way in the Fourier domain. We use for the large
scales L ¼ T ¼ 1=4. The singular kernels Gϵ;H and Hϵ are
regularized over the small scale ϵ ¼ 4dx such that, up to
numerical errors, the obtained field u is differentiable in
space and time, and divergence free in particular. Finally,
the trajectories XðtÞ of 214 particles, initially uniformly
distributed in the unit square, are computed according to
Eq. (1) using a second-order Runge-Kutta time marching
scheme and linear interpolation of the velocities, as detailed
in Ref. [39]. Their respective Lagrangian velocity vðtÞ ¼
dXðtÞ=dt and acceleration aðtÞ ¼ d2XðtÞ=dt2 are obtained
using finite-difference time derivatives.
Let us first focus on the statistical analysis of the

trajectories in an advecting Gaussian velocity field
uðx; tÞ [Eq. (2)]. To do so, we consider the nonintermittent
case γEul ¼ 0, and the particular valueHEul ¼ 1=3 to mimic
the regularity of turbulence. We display in Fig. 1(a) the
trajectories of particles initially uniformly distributed in the
unit square. We indeed observe strong chaotic mixing, and
notice that during the unit duration of the simulation,
particles have traveled a distance of order unity, as
expected. We show in Fig. 1(c) a typical time series of
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velocity v1ðtÞ and acceleration a1ðtÞ over the duration of
the simulation. We can see that the series are indeed
statistically stationary. Also, v1 is correlated over the large
integral timescale T, whereas a1 gets correlated over the
small timescale ϵ, which is consistent with the phenom-
enology of turbulence. A trained eye would see that a
clearly deviates from Gaussianity.
At this stage, it is tempting to explore the statistics of the

trajectories obtained while advecting the tracers by a
frozen-in-time velocity field, say uðx; 0Þ. We represent in
Fig. 1(b) the respective trajectories. Mixing is there much
less efficient than for the time-evolving velocity field
[Fig. 1(a)]. In particular, many of them have closed orbits.
Typical time series of v1 and a1 on a closed orbit are shown
in Fig. 1(d), displaying an expected periodicity.
Let us now estimate the regularity of vðtÞ obtained from a

Gaussian velocity field uðx; tÞ [Eq. (2) with γEul ¼ 0], and
quantify its dependence on HEul. To do so, we perform
simulations using ten values for HEul between 0.1 and 0.9.
Subsequent statistics are obtained using 214 trajectories
from ten independent realizations of the random Eulerian
field. To quantify the regularity of v, we estimate the
moments of the velocity time increments δ1τv1ðtÞ ¼
v1ðtþ τÞ − v1ðtÞ, and define the respective Lagrangian
Hurst exponent HLag and intermittency coefficient γLag as

hðδ1τv1Þ2qi ∝
ϵ≪τ≪T

τ2qHLag−2qðq−1Þγ2Lag ; ð6Þ

such that HLag can be estimated while fitting in the inertial
range (i.e., for ϵ ≪ τ ≪ T) the power-law exponent of
hðδ1τv1Þ2i ∝ τ2HLag . More generally, let us note that whereas
the behavior of Eulerian structure functions [Eq. (5)] is
exact in the asymptotic limit of vanishing ϵ and scale l, the
proposed behavior of their Lagrangian counterparts
[Eq. (6)] is a model whose parameters ðHLag; γ2LagÞ will
be eventually estimated following a fitting procedure.
We display in Fig. 2(a) the dependence on the scale τ of

the second-order structure function in a logarithmic repre-
sentation, for the ten values of the Eulerian Hurst exponent
HEul. We indeed observe a power-law behavior between the
dissipative range τ ≪ ϵ, where hðδ1τv1Þ2i ∝ τ2 and the large
scales τ ≫ T for which we get a saturation toward 2hv21i.
We proceed with the fit of the power-law exponent
(represented by solid black lines) and gather our results
in Fig. 2(c) (using ∘). We can see that the estimated
regularity of Lagrangian trajectories HLag is very close
to the imposed Eulerian regularityHEul, that isHLag ≈HEul,
as it was observed in the synthetic three-dimensional,
slowly evolving in time, flow of Ref. [21] and in the
frozen Navier-Stokes field of Ref. [40]. We superimpose
with a dashed line such a prediction, showing that is does
reproduce some of our estimations when HEul is smaller
than 1=2. Since the level of regularity is high, it is tempting
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FIG. 1. Path lines XðtÞ [Eq. (1)] of a Gaussian velocity field
uðx; tÞ [Eq. (2)], using HEul ¼ 1=3 and γEul ¼ 0. Other param-
eters of the simulation are given in the text. (a) Each of the
trajectories are represented with various colors, starting initially
from positions uniformly distributed in the unit square centered
on the origin (and represented with thick black lines). (c) Typical
time series of velocity v1 and acceleration a1 of a particle. Series
are arbitrarily shifted horizontally and renormalized such that
they are of same variance. (b) and (d) Similar plot as in (a) and (c),
but for a frozen-in-time velocity field uðx; 0Þ.
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FIG. 2. (a) Logarithmic representation of the second-order
Lagrangian structure function hðδ1τv1Þ2i=ð2hv21iÞ [Eq. (6)] ob-
tained from a Gaussian velocity field uðx; tÞ [Eq. (2)] using γEul ¼
0 and HEul ¼ 0.1; 0.2; 0.3; 1=3; 0.4; 0.5; 0.6; 0.7; 0.8, and 0.9
(from top to bottom). Results of our fitting procedure are
displayed with black lines. Inset: Similar plot as in (a), but for
the second-order velocity increment moment hðδ2τv1Þ2i=ð6hv21iÞ.
(b) Same plot as in (a), but for the frozen-in-time advecting field
uðx; 0Þ. (c) Power-law exponents observed in (a), i.e., 2HLag,
estimated using hðδ1τv1Þ2i (∘) and hðδ2τv1Þ2i (□). We superimpose
the two discussed behaviors HLag ¼ HEul (dashed line) and
HLag ¼ HEul þ 1

6
(solid line). (d) Same plot as in (c), but for

uðx; 0Þ.
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to check whether similar results are obtained with the
second-order increment, that is the increments of the
increments δ2τv1ðtÞ ¼ δ1τv1ðtþ τÞ − δ1τv1ðtÞ, which is not
only orthogonal to constants, but also to local linear trends,
allowing in particular to estimate Hurst exponents greater
than unity. We display in the inset of Fig. 2(a) the behavior
of their second moment as a function of the scale τ. Once
again, we observe a power-law behavior between the
dissipative range, where hðδ2τv1Þ2i ∝ τ4 and the large scales
τ ≫ T for which we get a saturation toward 6hv21i. We fit the
obtained exponents and reproduce our results in Fig. 2(c)
(using □). In this case, we obtain a very convincing
linear behavior, that falls in between HEul (dashed line)
and HLag ¼ HEul þ 1

6
, that includes in particular the

Kolmogorov’s values HEul ¼ 1=3 and HLag ¼ 1=2 (repre-
sented by a solid black line). We performed the same
analysis using the third-order increment, i.e., δ3τv1ðtÞ ¼
δ2τv1ðtþ τÞ − δ2τv1ðtÞ, and obtain same results as with
δ2τv1 (data not shown). We report in Figs. 2(b) and 2(d) a
similar study, but with a frozen-in-time advection velocity
field uðx; 0Þ, as it is illustrated in Figs. 1(b) and 1(d). The
very same conclusions as in the time-evolving case can be
drawn. In [29], we perform additional numerical simula-
tions, using larger resolutions up to N ¼ 216 collocation
points of purely spatial advecting fields, that allow us to
unambiguously eliminate the effects of regularization at
small ϵ and large L scales, which confirm that HLag ≈HEul.
Let us finally quantify intermittent corrections on the

trajectories (i.e., the dependence of HLag and γLag on HEul
and γEul). To do so, we repeat former simulations for
five values of the parameter γEul. Recall that in a 3d
turbulent field, γ2Eul ≈ 0.025 [14]. We start by performing
a similar study as presented in Fig. 2, but with a varying
γEul, and found no differences with former conclusions:
HLag ≈HEul, independently of γEul (data not shown). This
is a nontrivial property. Furthermore, trajectories extracted
from a Gaussian field (i.e., γEul ¼ 0) are intermittent. To see
this, we display in Fig. 3(a) the probability density
functions (PDFs) of Lagrangian velocity increments at
various scales (using HEul ¼ 1=3 and γEul ¼ 0). We indeed
observe the continuous shape deformation of the PDFs,
which is characteristic of the intermittency phenomenon
[41]. Actually, these non-Gaussian behaviors were already
seen on the typical time series of acceleration in Fig. 1(c).
Note that at the smallest scale [top blue curve of Fig. 3(a)],
PDFs of increments and acceleration coincide in this
representation, and exhibit noticeable exponential tails,
as they are obtained for pressure gradients in Gaussian
ensembles [42]. At the same line, we represent in Fig. 3(b)
the acceleration PDFs for varying γEul, and for HEul ¼ 1=3.
We see that as γEul increases, the acceleration PDF develops
larger and larger tails, which shows that γLag increases in a
monotonic way with γEul. To quantify more precisely this
dependence, we estimate the Lagrangian velocity flatness
F 1ðτÞ ¼ hðδ1τv1Þ4i=hðδ1τv1Þ2i2 that is expected to behave,

according to Eq. (6), as τ−4γ
2
Lag in the inertial range. We

represent in Fig. 3(c) the behavior of the flatness for
increasing values of γEul and HEul ¼ 1=3. We see that
flatness is close to three at large scales τ ∼ T, i.e., the value
for a Gaussian process, and increases, all the more as γEul
gets bigger, as the scale decreases. The overall dependence
of γLag on both HEul and γEul is illustrated in Fig. 3(d),
where the estimation of γLag is based on both the flatness of
the first-order (solid lines) and second-order (dashed lines)
increments. We can conclude to a complex dependence of
γLag on the parameters of the advecting Eulerian field.
Interestingly, the Lagrangian intermittency coefficient in
experimental and numerical 3d flows has been found
compatible with γ2Lag ≈ 0.085 [7], a value which is of the
order of what is found presently when we focus on the
particular value HEul ≈ 1=3 and γ2Eul ¼ 0.025. We provide
in [29] a similar study with a frozen-in-time advecting
field that shows that obtained intermittent corrections on
Lagrangian velocities are similar to those displayed in
Fig. 3.
To summarize, we have built an incompressible sta-

tistically homogeneous, isotropic, and stationary spatio-
temporal Eulerian advection field [Eq. (2)]. It is
asymptotically rough and multifractal [Eq. (5)], governed
at small scales by the parameters HEul and γEul. We have
then estimated, based on numerical simulations, the stat-
istical properties of its Lagrangian trajectories. We find that

-10

0  

10 

-30 -15 0  15 30 -10 -5 0  5  10 

-40

-30

-20

-10

0  

0   

0.03

0.06

0.09

0  0.2 0.4 0.6 0.8 1  -8 -6 -4 -2

0  

0.5

1  

1.5

2  

-8 -6 -4 -2
0

1

2

3

(a) (b)

(c) (d)

FIG. 3. (a) PDFs of the Lagrangian increments δ1τv1 from large
(bottom) to small (top) scales in a Gaussian advecting field of
parameters HEul ¼ 1=3 and γEul ¼ 0. PDFs are all of unit
variance, and arbitrarily shifted vertically for clarity. (b) PDFs
of Lagrangian acceleration forHEul ¼ 1=3 and for γ2Eul ¼ 0, 0.01,
0.02, 0.03, and 0.04 (from bottom to top), of unit variance and
arbitrarily shifted. (c) Logarithmic representation of the flatness
of δ1τv1 (see text), with same parameters and colors as in (b).
Inset: same as in (c), but for δ2τv1. Results of fitting are displayed
with black lines. (d) Estimated values for γLag [Eq. (6)] from the
fitting procedure of the flatness curves of (c). Same colors as in
(b) and (c), for δ1τv1 (solid lines) and δ2τv1 (dashed lines).
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they are also asymptotically rough and multifractal
[Eq. (6)], and relate their parameters HLag and γLag to
those of the advecting Eulerian field. In particular, we
estimate with good accuracy, at second-order from a
statistical point of view, that the regularity of the trajectories
follows closely the one of the Eulerian field. Furthermore,
we evidence unambiguous intermittent corrections, even
when the advecting field is prescribed to be Gaussian.
These are new and nontrivial results that are calling for new
theoretical developments. In this regard, great progress has
been made in the mathematical description of path lines of
some rough advecting fields [43,44]. Also, the proposed
velocity field could be used to investigate related important
situations, such as the passive advection of scalars [22], and
the relative dispersion of particle pairs [45,46]. Advecting
fields of Ref. [20], some of which get rid of the sweeping
by large scales, are explored in [29], and lead for some
aspects to similar conclusions. Finally, including the
intrinsically asymmetrical nature of the distributions of
the advecting field (i.e., the skewness phenomenon), as it is
proposed in Refs. [26,47], may allow to reproduce the
observed values HEul ¼ 1=3 and HLag ¼ 1=2, possibly on
the line HLag ¼ HEul þ 1

6
.
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