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The majority of classical dynamical systems are chaotic and exhibit the butterfly effect: a minute change
in initial conditions has exponentially large effects later on. But this phenomenon is difficult to reconcile
with quantum mechanics. One of the main goals in the field of quantum chaos is to establish a
correspondence between the dynamics of classical chaotic systems and their quantum counterparts. In
isolated systems in the absence of decoherence, there is such a correspondence in dynamics, but it usually
persists only over a short time window, after which quantum interference washes out classical chaos. We
demonstrate that quantum mechanics can also play the opposite role and generate exponential instabilities
in classically nonchaotic systems within this early-time window. Our calculations employ the out-of-time-
ordered correlator (OTOC)—a diagnostic that reduces to the Lyapunov exponent in the classical limit but is
well defined for general quantum systems. We show that certain classically nonchaotic models, such as
polygonal billiards, demonstrate a Lyapunov-like exponential growth of the OTOC at early times with
Planck’s-constant-dependent rates. This behavior is sharply contrasted with the slow early-time growth of
the analog of the OTOC in the systems’ classical counterparts. These results suggest that classical-to-
quantum correspondence in dynamics is violated in the OTOC even before quantum interference develops.
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Introduction.—Quantum mechanics generally washes
out sharp features of classical dynamics due to its wavelike
nature and the uncertainty principle. It becomes crucial for
chaotic systems because sharp features such as sensitive
dependence on initial conditions—the butterfly effect—are
eventually destroyed. In isolated systems, the butterfly
effect is suppressed after a short period of semiclassical
evolution. The scrambling or Ehrenfest time tE grows
logarithmically with system size [1–4].
Even though the Ehrenfest time is usually short even in

macroscopic isolated systems, decoherence can reset
dynamics back to the semiclassical regime. This explains
why classical chaotic dynamics is ubiquitously observed
[3–6] (for alternative views on the long Ehrenfest-time
“paradox,” see Ref. [7]). Regardless of the explanation, the
behavior of quantum systems in the Ehrenfest window and
the fate of classical-to-quantum correspondence in this
regime are of fundamental interest, and we focus on this
regime in the present Letter. In particular, we demonstrate
here that quantum mechanics can induce short-time expo-
nential instabilities in models, which are classically non-
chaotic. While our construction is specific to billiards, we
believe that this behavior ubiquitously exists in a variety of
dynamical systems.
We start with a simple set of observations. Consider a

classical “mathematical billiard,” i.e., a point particle within
a closed domain reflecting off of its hard walls, such as the
polygonal black shape in Fig. 1. It has been rigorously

proven [8] that the Kolmogorov–Sinai (KS) entropy and the
closely related Lyapunov exponents of any polygonal
billiard are strictly zero. Next, consider the corresponding
“physical billiard,” a classical hard disk of radius rp
reflecting off of the same polygonal walls. This physical
billiard is equivalent to a mathematical billiard of a smaller
size, since the particle’s center is not allowed to approach

FIG. 1. Outer black line: a polygonal butterfly-shaped billiard.
Inner blue line: effective mathematical billiard hosting a point
particle equivalent to the outer polygonal billiard hosting a solid
disk of radius rp. The inward-pointing corners of the billiard are
rounded into circular arcs or radius rp, making the effective
mathematical billiard classically chaotic with positive Lyapunov
exponent. Gray shaded region: a close sub-rp vicinity of the
billiard wall. Middle red line: a smoothened billiard used for
comparison below.
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the walls closer than rp. This equivalent billiard is shown
by the inner blue shape in Fig. 1. We assume that the
particle’s mass is concentrated in its center and ignore
rotational motion. A crucial observation [9] is that this
redrawing gives rise to a smoothing of sharp features of
nonconvex polygons. The resulting shape is no longer a
polygon, and the obstruction for the KS entropy to vanish
is removed. Indeed, the inner blue billiard in Fig. 1 is
classically chaotic, with a positive Lyapunov exponent.
Finally, consider a quantum particle in a nonconvex
polygonal billiard. Semiclassical early-time dynamics of
a quantum wave packet is in some sense similar to motion
of a finite-size classical particle, i.e., classically chaotic
motion in the physical billiard. As shown below, there
indeed exist exponential instabilities in classically non-
chaotic systems such as this one, hence providing an
example of violation of the conventional view on the
classical-to-quantum correspondence.
To diagnose this behavior, we employ the out-of-time-

ordered correlator (OTOC). It was introduced in Ref. [10]
and used recently in the pioneering works by Kitaev [11]
and Maldacena et al. [12] to define and describe many-
body quantum chaos. In the last few years, the OTOC has
become a popular tool to describe “quantum chaos” in a
variety of systems (see, e.g., Ref. [13]). It was shown in
Refs. [14–16] that the exponential growth of the OTOC,
although not always equal, might be connected to the
exponential divergences of orbits in the phase space of an
effective classical system. In certain cases, such as the
celebrated Sinai billiard [17] and Bunimovich stadium [18],
it is straightforward to understand this classical limit.
Below, we consider nonchaotic polygonal billiards instead.
In a polygon, for any pair of trajectories—no matter how
close the initial conditions are—one can identify the origin
of each trajectory evolving the dynamics backward
in time [8], ensuring that the KS entropy is zero. Note
that in the ergodic hierarchy, which, in the order of
“increasing chaoticity” consists of the following systems:

The polygonal billiards fall within, at most, the SM class.
Only the K- and B- systems are chaotic and have a positive
KS entropy (see, e.g., Ref. [19] for a detailed discussion of
the hierarchy). Interestingly, however, the mixing property
at the classical level can be sufficient to generate Wigner–
Dyson or intermediate energy level statistics on the
quantum side, as was shown, for example, in Ref. [20]
for a family of irrational triangular billiards [21].
Apart from this “quantum” Lyapunov instability, where

quantum mechanics effectively promotes the correspond-
ing classical system in the ergodic hierarchy, there are
potentially more prosaic sources of early-time instabilities
in OTOC. First, note that the classical definition of
exponential Lyapunov instabilities involves taking two
limits: infinitesimally small initial separation in the phase

space and infinite time limit in the subsequent evolution.
However, neither limit is available quantum mechanically
because a wave packet always has a finite size per
uncertainty principle and subsequently spreads out on
timescales of order the Ehrenfest time. Second, there is
a distinction between the quantum-mechanical expectation
value in the way quasiclassical trajectories are accounted
for and the classical phase-space average [14]. Therefore,
in most numerical simulations of OTOCs, the proper
Lyapunov limit cannot be enforced and the dynamics of
the wave packets may involve spurious rapid growth. To
explore these types of phenomena, we also study convex
polygonal billiards (specifically an irrational triangle).
Models.—We perform explicit calculations for the bil-

liard shown in Fig. 1, a quadrilateral nonconvex billiard,
and a triangular billiard defined below.
We launch a wave packet with the initial wave function

Ψ0ðrÞ ∝ exp

�
−
ðr − r0Þ2
2ℏeffσ

2
þ i
ℏeff

p0 · r

�
ð1Þ

by decomposing it into the billiard’s energy eigenstates and
evolving accordingly (see Fig. 2, which illustrates a
representative time evolution). This requires numerical
solution of the Schrödinger equation for the billiard:

−
ℏ2
eff

2
∇2ΨðrÞ ¼ EΨðrÞ; ΨðrÞjr∈billiard walls ¼ 0: ð2Þ

Here ℏeff ¼ ℏ=ðp0

ffiffiffiffi
A

p Þ, A ¼ 1 is the billiard’s area, and
p0 ¼ jp0j ¼ 1 is the wave packet’s average momentum.
We also set the particle’s massm ¼ 1. The butterfly-shaped
billiard has two reflection symmetries: x → −x and
y → −y. Thus, its eigenstates fall into four parity classes.
To enforce this symmetry and speed up the calculations, we
solve the eigenvalue problem on a quarter of the billiard,
imposing the Dirichlet and/or Neumann boundary con-
ditions on each cut, which defines a parity class.

FIG. 2. An example of successive stages of the wave-packet
evolution, jΨðr; tÞj2, in the butterfly-shaped billiard. Red arrows
indicate the directions of motion of the components. Initial
velocity is aimed at the right inner corner.
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We solve these four boundary-value problems for the
Laplace operator numerically using the finite-element
method and find eigenstates of each class up to a certain
energy cutoff. The accuracy of the numerical solution
decreases with the number of found eigenstates [22]. We
use Weyl’s law for the number of modes [23] to control it.
Weyl’s law sets the asymptotic behavior of the average
number of eigenstates below energy E ¼ ℏ2

effε=2 as:
N ðεÞ ≃ ½A=ð4πÞ�ε − ½P=ð4πÞ� ffiffiffi

ε
p

, ε → ∞, where P is the
billiard’s perimeter. For our purposes, it is sufficient to use
Nmax ∼ 104 eigenstates, and within this range, we have a
perfect agreement with Weyl’s law, i.e., the number of
found states is centered around the Weyl’s asymptote. We
repeat the calculations with the boundary-integral method
and obtain the same results.
Along with this billiard, we introduce an effective

mathematical billiard (Fig. 1, inner blue shape) obtained
by tracing the set of positions available to the center of a
circular particle of radius σ

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏeff=2

p
inside the polygonal

billiard. The squeezing parameter σ is defined in Eq. (1).
Diagnostic tool.—To explore quantum dynamics, we use

the OTOC [11–16] defined as

CðtÞ ¼ −h½x̂ðtÞ; p̂xð0Þ�2i; ð3Þ

where x̂ðtÞ and p̂xðtÞ are the Heisenberg operators of the x
components of the particle’s position and momentum. The
OTOC probes the sensitivity of quasiclassical trajectories
to initial conditions [10], as p̂xð0Þ ¼ −iℏeff∂=∂xð0Þ, and
hence CðtÞ ¼ ℏ2h½∂xðtÞ=∂xð0Þ�2i. Therefore, classical
Lyapunov-like growth is anticipated at early times,
CðtÞ ∝ expð2λ̃tÞ, for a chaotic system, with λ̃ related to
its Lyapunov exponent in the respective subspace.
As was shown in Ref. [16], whether the OTOC grows

exponentially depends on an initial quantum state and the
presence of a finite time window between the first collision
and the Ehrenfest time. For billiards, a natural choice of the
initial state is the minimal-uncertainty wave packet, Eq. (1).
The Ehrenfest time in chaotic systems is short and grows
logarithmically slowly with system size: tE ¼ lnðℏ−1

effÞ=λcl,
where λcl is the Lyapunov exponent of the classical
counterpart [1]. This estimate is based on the fact that,
in contrast to nonchaotic systems, the wave-packet spread-
ing in chaotic systems is exponential. Extending the
Ehrenfest window to cover the longtime ergodic classical
behavior, which is required to define the global Lyapunov
exponents in chaotic systems, is an exponentially demand-
ing numerical task. However, local finite-time Lyapunov
exponents can be defined, although they fluctuate at these
short times [16].
Breakdown of classical-to-quantum correspondence.—

In classically chaotic quantum billiards, the exponential
growth of the OTOC may be related to the classical
Lyapunov instability and extends up until t ∼ tE [16]. At
t > tE, the wave packet is spread across the entire system,

and no further exponential growth is possible. One can
define the classical counterpart of the OTOC as follows:

CclðtÞ ¼ ⟪ lim
Δxð0Þ→0

�
ΔxðtÞ
Δxð0Þ

�
2

⟫; ð4Þ

where ⟪ � � �⟫ denotes the classical phase-space average
over the Gaussian Wigner function corresponding to the
initial quantum packet in Eq. (1), and Δx is the distance
along the x axis between a pair of trajectories starting near
some point in the phase space. CclðtÞ agrees with CðtÞ=ℏ2

eff
in chaotic systems all the way up to tE. After that, CðtÞ
slows down and eventually saturates, while CclðtÞ contin-
ues to grow exponentially.
In the polygonal billiards, there are no positive classical

Lyapunov exponents, and the corresponding classical
OTOC does not grow exponentially at any time, as shown
in the inset in Fig. 3 for the case of the butterfly-shaped
polygonal billiard. However the quantum-mechanical
OTOC in polygonal billiards shows a clear exponential
growth at early times that has no origin in the classical
counterparts, as demonstrated in Figs. 3 and 4.

FIG. 3. Main plot. Open blue circles and line: logarithm
of the OTOC in the butterfly-shaped billiard: ln ½CðtÞ=ℏ2

eff � ¼
ln ½−ð1=ℏ2

effÞh½x̂ðtÞ; p̂xð0Þ�2i�. Solid red triangles: the same in the
rounded version of this billiard. A remarkable agreement sup-
ports our finite-size smearing arguments. In addition, we show
the corresponding behavior of an alternative diagnostic,
LðtÞ ¼ hln ð−ð1=ℏ2

effÞ½x̂ðtÞ; p̂xð0Þ�2Þi, that swaps the order of
averaging and logarithm to that in the proper definition of the
classical Lyapunov exponent. For chaotic systems, one would
expect LðtÞ ¼ 2λ̃tþ const at t < tE. Green squares and line: LðtÞ
in the polygonal butterfly-shaped billiard. Pink crosses: LðtÞ in
the rounded billiard. Dashed black lines: linear fits for
ln½CðtÞ=ℏ2

eff � and LðtÞ in the polygon. Both show the exponent
2λ̃ ≈ 3.3 that is five times larger than the inverse time window,
which ensures the validity of the fit. Inset. The comparison
betweenCðtÞ=ℏ2

eff andCclðtÞ [see Eq. (4)] and between exp ½LðtÞ�
and exp ½LclðtÞ� ¼ expf⟪ ln ½∂xðtÞ=∂xð0Þ�2⟫g in the polygonal
quantum and classical billiards, respectively. ℏeff¼2−7,
σ¼1=

ffiffiffi
2

p
, Rs ¼ ð ffiffiffi

2
p

− 1=16
ffiffiffi
2

p Þ ≈ 0.02.
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As discussed in the introduction, the motion of a
minimal-uncertainty wave packet is similar to that of a
finite-size disk. Classical motion of such a disk gives rise to
an effective billiard that hosts a pointlike particle at the
disk’s center that is not allowed to approach the walls of the
original billiard closer than by disk’s radius. Many billiards
preserve their status within the ergodic hierarchy upon this
procedure (e.g., a stadium turns into a smaller stadium).
Not so for nonconvex polygonal billiards. In such non-
chaotic systems, there can still be measure-zero sets of
unstable points, and these get smeared over finite-measure
regions by introducing a finite size of the particle, which
takes them up the ergodic hierarchy from the mixing to
the K-chaotic class. A quantum wave packet can cause a
similar effect.
In addition, polygons constitute an everywhere dense

measure-zero set in the space of closed curves on a plane,
and the phase space of the corresponding billiards contains
isolated unstable points. A slight variation of the wall’s
shape almost always results in finite-curvature regions and
smears out singular phase-space points. A possible conse-
quence of that would manifest because, in contrast to a rigid
disk, a quantum-mechanical wave packet effectively
“rounds” singularities even if they originate from outer
corners of polygons, including those in the convex polygo-
nal billiards considered below. This can be generalized to a
statement that quantum mechanics promotes measure-zero
sets of unstable points into finite-measure sets. We check
these conjectures by varying the billiard’s boundary within
the shaded gray region in Fig. 1, and, in particular, compare
the behavior of the OTOC in the polygonal and in a
rounded billiard, such as the middle red line in Fig 1. The
latter system is classically chaotic. We find a good agree-
ment between the quantum OTOCs in the two, as demon-
strated in Fig. 3. In addition, from this comparison we can
infer that there are no significant effects related to the

nonsmoothness of the polygonal boundary, such as dif-
fraction, as in the case in the quantum baker’s map [24].
Note that the latter has a positive classical Lyapunov
exponent, while in our case, the exponential growth of
the OTOC appears to be a purely quantum effect.
We also point out here that in two early papers [25,26]

one finds a discussion of the effect of finite perturbations in
polygonal billiards and that this may lead to the appearance
of exponential growth (classically and the corresponding
signatures in quantum spectral properties). This may have
the effect that the violation of the classical-to-quantum
correspondence could find its alternative explanation in an
improper choice of the classical counterpart (infinitesimal
perturbations) and that considering finite perturbations
could “heal” that apparent violation.
At smaller values of ℏeff , the wave packets are tighter,

and their sides are steeper. Following the reasoning in
Ref. [27], it causes the rate of the OTOC’s divergence, λ̃, to
be larger than that at larger values of ℏeff , as shown in
Fig. 4, main plot. While the average Lyapunov exponent
should go to zero in the limit of ℏeff → 0 in a polygonal
billiard, averaging of the OTOC over a minimal-uncertainty
wave packet whose trajectory crosses an inner billiard
corner emphasizes the vicinity of the unstable point, which
is shrinking as ℏeff → 0. Its overall contribution to the
classical Lyapunov exponent goes to zero, as it should, but
the OTOC does not reflect it properly. This highlights one
of the difficulties in interpreting the growth rate of the
OTOC in the classical sense. The inset in Fig. 4 shows an
analogous behavior for the quadrilateral billiard shown
in Fig. 4.
Quantum dynamics in convex polygonal.—Classical

convex polygonal billiards do not change their status within
the ergodic hierarchy upon promoting their point-particle
versions to those with finite-size particles. However,
quantummechanically, they still show a rapid initial growth
of the OTOC (superimposed with an oscillatory behavior),
as we demonstrate for an irrational triangular billiard
obtained from the quadrilateral one in Fig. 5 by removing
the vertex. The effective rate of growth is smaller than for
the nonconvex billiard, but signs of instability are still
present. As shown in Fig. 5, the early-time behavior has a
period of what looks like a sharp growth, although it is
modulated by the effects of collisions with the walls.
We believe that this growth of the OTOC in convex

billiards is due to the fact that a quantum simulation cannot
access the proper small distance and longtime limit where
classical Lyapunov exponents are defined. This behavior of
the OTOC is a property of the initial state rather than the
system itself. If so, similar growth should be observable
in integrable systems as well. We have considered the
simplest—rectangular—“billiard” and indeed found that
some signs of spurious ℏeff -dependent growth can be
detected. Of course, these periods of growth have no
relation to chaos or the butterfly effect.

FIG. 4. Main plot. Logarithm of the OTOC in the butterfly-
shaped billiard at three different values of ℏeff . The exponential
growth hinges on the finite wave-packet size. Inset. Logarithm of
the OTOC in the quadrilateral billiard (Fig. 5), averaged over an
ensemble of initial conditions as indicated by the bar, …̄, at the
same values of ℏeff :σ ¼ 1=

ffiffiffi
2

p
.
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All in all, there appear to exist two sources of rapid
growth of OTOC in billiards: one related to a genuine
Lyapunov instability (in chaotic billiards and those that are
promoted in the chaotic hierarchy upon quantization) and a
spurious growth related to a finite-size wave packet
enforcing an “unfaithful” representation of the underlying
classical dynamics. The latter spurious growth is present
independently of the status of the effective billiard in the
chaotic hierarchy. In order for the OTOC to have a physical
meaning, it is important to disentangle these two contri-
butions. The genuine Lyapunov growth, if any, can be
extracted by examining scaling of the growth rate with ℏeff
(the spurious growth should disappear in the true ℏeff → 0
limit, in contrast to quantum chaotic systems where it
asymptotes a constant).
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