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In a two-dimensional non-Hermitian topological photonic system, the physics of topological states is
complicated, which brings great challenges for clarifying the topological phase transitions and achieving
precise active control. Here, we prove the topological phase transition exists in a two-dimensional parity-
time-symmetric coupled-resonator optical waveguide system. We reveal the inherent condition of the
appearance of topological phase transition, which is described by the analytical algebraic relation of
coupling strength and the quantity of gain-loss. In this framework, the system can be switched between the
topological and trivial states by pumping the site rings. This work provides a new degree of freedom to
control topological states and offers a scheme for studying non-Hermitian topological photonics.
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Topological photonics provides a new platform to study
the light-matter interactions and optical devices [1–3]. For
example, robust topological edge states with their in-sight
physics have great potential applications in lasers [4–6],
quantum light sources [7], and reconfigurable pathways
[8,9]. Though there has been great interest in topological
photonics, the exploration of topological photonics has
mainly been confined to the Hermitian regime. However,
real systems are usually non-Hermitian. Advances in
controlling gain and loss have provided mature methods
in engineering non-Hermitian processes in photonic sys-
tems. Thus, studying non-Hermitian properties in topo-
logical photonics has the potential not only to utilize
intrinsic loss, but also to achieve the purpose of realizing
the active control of topological phase transition.
Nevertheless, the investigation of non-Hermitian topologi-
cal properties is difficult, resulting from the complexity of
topological invariants [10]. What is worse, the principles of
topological phase transition in Hermitian systems are not
certain to still be valid in a non-Hermitian system.
Till now, studies of the non-Hermitian topological edge

states were mainly constrained in one-dimensional systems,
such as the plasmonic array [11,12], the parity-time (PT)-
symmetric Su-Schrieffer-Heeger model [13–16], and the
special constructed gain-loss chain [17]. Recently, a two-
dimensional (2D) system with reconfigurable topological
edge states controlled by pump light has been realized [18],

showing the enormous potential for application of non-
Hermitian photonics. However, clarifying the condition for
the existence of topological phase transitions and achieving
precise active control remains a great challenge in 2D non-
Hermitian topological photonic systems.
Here, we prove that the topological phase transition

exists in a 2D PT-symmetric coupled-resonator optical
wave-guide (CROW) system. We reveal the inherent
condition for the appearance of topological states, and
we derive the analytical algebraic relation of coupling
strength and the quantity of gain-loss describing the
occurrence of the topological phase transition. What is
more, the result can be generalized to arbitrary gain-loss
configuration through a coordinate translation of gain and
loss. Further discussions with a specific construction are
carried out, showing the phase transition process with the
field distribution and the transmission response.
The Hermitian CROW system is constructed of a site and

link rings array, in which each site ring couples with four
link rings, and each link ring couples with two site rings
[19–22]. Site rings can be seen as the square lattice unit
points, and link rings play the roles of their interactions. In
order to demonstrate the existence of the topological states
in the 2D non-Hermitian system and present the key role of
the PT symmetry for the appearance of the topological
states, we introduce the refractive-index modulation
[23,24] with an even (odd) function for the real (imaginary)
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part of the refractive index in the array [Fig. 1(a)]. In the
unit cell of our construction [Fig. 1(c)], the two neighboring
site rings are set as gain (red) and loss (black) with equal
quantities, while the link rings remain passive (gray). Note
that the sizes of all rings are identical, meaning that the total
optical path and the resonant frequency are the same among
all rings.
We utilize the transfer matrix method to investigate the

band structure of the system. The field amplitudes at the
coupling position and the phase delay ϕ ¼ ωLeff=4c (Leff
is the optical path of each ring) across one quarter of the
ring are marked in Fig. 1(c). The propagation modes in
site rings are set clockwise in our calculation. We define t
and r as the transmission and coupling coefficients between
site and link rings, respectively, as shown in Fig. 1(c).
According to waveguide mode coupling theory, t is a real
number, r is an imaginary number, and jtj2 þ jrj2 ¼ 1 is
always satisfied. All the relations of field amplitudes
between two neighboring site rings can be described by
eight equations. For example, we set d0i;j ¼ Rai;j þ Tb0i;j,
where

R ¼ −rr�ei2ϕ

1 − t2ei4ϕ
; T ¼ tð1 − ei4ϕÞ

1 − t2ei4ϕ
: ð1Þ

Because of the space inversion symmetry, ci;j ¼ Rb0i;j þ
Tai;j is also tenable. As the CROW system is a periodic
array, Floquet-Bloch theory is applied to get the relation
between neighbor unit cells to describe the infinite array
[25,26], which is Eiþ1;j¼Ei;jeiKx , Ei;jþ1 ¼ Ei;jeiKy , where
Ei;j is the general term of the electric field amplitude of

site rings. All the transfer matrices, which are shown in
Fig. 1(b), can be expressed by the coupling parameters R
and T, phase delay ϕ, Bloch phase Kx and Ky, and the
quantity of gain (loss) κ. By building the simultaneous
equations of all the coupling relations, we obtain the
eigenvalue equation

eiKx

�
b0

d0

�
¼ MxMG

y MxML
y

�
b0

d0

�
; where

Mx ¼
1

R

�
1 −T
T R2 − T2

�
;

MG
y ¼ 1

T

�
e−i2ϕe−2κ −Re−iKy

ReiKy ðT2 − R2Þei2ϕe2κ
�
;

ML
y ¼ 1

T

�
e−i2ϕe2κ −Re−iKy

ReiKy ðT2 − R2Þei2ϕe−2κ
�
: ð2Þ

Here κ means that the field amplitudes increase
(decrease) eκ ðe−κÞ times after traveling along a quarter
of the whole ring. The band structure now can be derived
based on Eq. (2). In the non-Hermitian case, the phase
delay ϕ is ðωþ iωiÞT0, where T0 is the propagation time
equal to Leff=4c. Since frequency is a complex number, the
band structure is described in the complex space as well.
The imaginary bands characterize the corresponding mode
gain or loss of the system [27]. Figure 2(a) shows the bulk
band structures with four different κ’s and a fixed coupling
strength t ¼ 0.2. As the frequency response of resonators is
periodical, the band structure also has a period of normal-
ized Δω ¼ 1. It can be found that the band structure of the
PT symmetry system shows band inversion, which is the
typical characteristic of the topological phase transition
[28–30]. With the increase of κ, the two bands in one period
get closer and form a Dirac point. Then the Dirac point
opens up a new band gap when κ further gets larger. The
corresponding projected band is also investigated with 50
unit cells along the y direction of the array to provide the
information of edge states. It can be seen that edge states
between the two bulk bands disappear in the new gap after
the Dirac point opens up. This band inversion is exactly
the topological phase transition, which is similar in the
Hermitian CROW system.
In the band structure calculation, we find that Dirac

points always appear at

ω ¼
�
N −

1

2

�
2πc
Leff

; ð3Þ

where N denotes the periodicity of frequency. Therefore,
the phase delay can be derived as

ϕ ¼ π

4
þ N

π

2
; ð4Þ

FIG. 1. (a) CROW system with a parity-time-symmetric lattice.
Horizontally neighboring site rings are gain (red) and loss
(black), while all the link rings (gray) are passive. A schematic
topological edge mode is shown on the lower edge. (b) Coupling
model of site rings. All link rings are replaced with dashed lines,
and their couplings with site rings are abstracted into the transfer
matrices, which are labeled on the model. (c) Unit cell of the
lattice with field amplitudes, phase delay, and coupling coef-
ficients labeled on it.
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indicating the frequency corresponds to the destructive
interference of each ring. Dirac points are located at the Γ
point (Kx ¼ Ky ¼ 0) in the Brillouin zone. Thus, at Dirac
points, Eq. (1) is simplified as

R ¼ i sin γ; T ¼ cos γ; ð5Þ
where γ ¼ arctanð1 − t2=2tÞ is a reduced coupling param-
eter. The transfer matrix is then written as

Mx ¼
1

i sin γ

�
1 − cos γ

cos γ −1

�
;

MG
y ¼ i

cos γ

�
e−2κ − sin γ

sin γ −e2κ

�
;

ML
y ¼ i

cos γ

�
e2κ − sin γ

sin γ −e−2κ

�
: ð6Þ

The condition for Dirac points to exist is that the
eigenvalue equation have a solution, and it requires

jMxMG
y MxML

y − Ij ¼ 0: ð7Þ
Through solving this equation, a simple relation is
obtained as

tan γ ¼ cosh 2κ: ð8Þ
This relation describes a topological phase boundary in
the phase diagram shown in Fig. 3. The phase diagram

indicates that the topological edge state can appear in the
non-Hermitian system with PT symmetry. In previous
Hermitian systems, the topological phase transition could
only be realized by tuning the coupling strengths of the
system—i.e., the topological phase transition only occurred
along the horizontal blue line shown in Fig. 3. In this non-
Hermitian system, the topological phase transition can also
appear along the vertical green line with the variation of κ.
In order to investigate the topological phase transition in
this new degree of freedom, we calculate the band
structures for κ ¼ 0, κ ¼ 0.322, κ ¼ 0.761, and κ ¼
0.804 with a fixed coupling strength γ ¼ arctan 2.4
(Fig. 2). The first two points are located at the topological
nontrivial region, for which the topological edge states
appear in the band gap in Fig. 2(b). The third value is
exactly on the phase boundary, which corresponds to the
case that the band forms a Dirac point. The last point is
located in the trivial region, and edge states disappear in the
band gap.
A generalized derivation with the arbitrary gain and

loss of two site rings in the unit cell is investigated in the
Supplemental Material [27]. Quantities κ1 and κ2 replace κ
and −κ in the transfer matrices [Eq. (6)], and the result is
that only when the quantity of gain and loss is equal (i.e.,
κ1 þ κ2 ¼ 0) does Eq. (7) have a solution, which means the
PT configuration is a key condition in this framework to
support such a topological phase transition. However, this
derivation has a basic assumption—that the eigenvalue of
the Dirac point is a real number. In fact, it can also be a

FIG. 2. (a) and (b): Bulk and projected band structures of the real frequency with different gain-loss quantities κ and a fixed coupling
strength t ¼ 0.2, respectively. When κ < 0.761, there are topological edge states in the band gap. Two bulk bands get closer to form a
Dirac point until κ ¼ 0.761. The Dirac point opens up a new gap without any edge state in it when κ > 0.761.
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complex number, which means the eigenstate has gain or
loss. When κ1 ≠ −κ2, the edge states can still exist, but the
modes corresponding to the edge states have a nonzero
imaginary part. When the system loss is greater (less) than
the gain, the edge states propagate with a loss (gain)
transmission. Therefore, such topological phase transition
only depends on the contrast of κ1 and κ2 (even when they
are both positive). The edge states will maintain and be
enhanced (attenuated) with the increase (decrease) of κ1
or κ2 when the contrast κ1 − κ2 is small to stay in the
topological region; but when the contrast of κ1 − κ2 is large
enough to go into the trivial region, the transmission of
edge states will start to decline and finally lead to the
forbidden state with the increase (decrease) of κ1 or κ2. In
addition, since arbitrary gain and loss are equivalent to a
PT-symmetric configuration with a uniform background of
gain or loss, the behavior of edge modes can also be
obtained based on the PT-symmetric case with a back-
ground gain or loss.
The electric field distribution of a PT-symmetric CROW

array with 8 × 8 site rings is numerically obtained using the
transfer matrix method. The input and output channels are
set, completely coupling with the site rings on the upper-
left and upper-right corners, respectively. The coupling
strength in the array still meets tan γ ¼ 2.4, corresponding
to the vertical green line in Fig. 3, and the normalized
frequency ω in the numerical calculation is selected at 0.46,
close to the Dirac point frequency. Figure 4 shows the
electric field distribution of a CROW array with the same

four quantities of gain and loss as those of the band
structures. Because we are mainly concerned about the field
in site rings, we leave out link rings in the figure. Figure 4(a)
shows the ordinary topological edge state, which is the
Hermitian case as κ ¼ 0. In Fig. 4(b), κ ¼ 0.322, the system
is in the topological region. The edge state still exists, but the
energy gets gain (loss) in gain (loss) rings. Note that the gain
and loss just counteract each other, well matching with the
zero mode gain or loss of the edge states reflected by the
imaginary part of the band structure [27]. In Fig. 4(c), the
field distribution shows a bulk statewith κ ¼ 0.761, which is
consistent with band structure. Finally, the system evolves
into the trivial region as κ increases to 0.804. Light cannot
travel into the array, and nearly all the energy travels back to
the input channel [Fig. 4(d)].
Further, we analyze the transmission properties with the

variation of κ under different γ values to quantitatively
discuss the effect of controlling the topological phase
transition in an array with 5 × 5 unit cells. Figure 5(a)
presents the transmission spectra with four coupling
strengths γ in the topological nontrivial region and four γ
in the trivial region. The four spectra corresponding to larger
coupling strengths exhibit transition points which are
responses of the topological phase transitions, while the
other four decrease smoothly. For the four larger γ values, the
topological phase transition happens when κ increases to the
value decided by Eq. (8). The transmission sharply decreases
as the system evolves into the trivial region. The dashed lines
are the exact phase transition positions solved byEq. (8). The
mismatching between the transition points and the accurate
position is resulting from the finite array [27], and it will be
smaller when the calculated array gets larger.
Finally, we illustrate the topological phase transition in

the view of band inversion. The eigenmodes at the top of
the lower band and bottom of the upper band are calculated

FIG. 4. The electric field distribution under different gain-loss
quantities κ. An 8 × 8 CROW array is solved numerically based
on the transfer matrix method with accurate coupling conditions.
The input is set on the upper-left corner, and the output is set on
the upper-right corner. The frequency of input light is selected
close to the Dirac point—that is, ω ¼ 0.46. The parameters κ of
each diagram correspond to the dots in Fig. 3.

FIG. 3. Topological phase diagram of coupling strength γ and
gain-loss quantity κ. The relation tan γ ¼ cosh 2κ is plotted on the
diagram, which is the boundary of topological phase transition.
The blue line denotes the topological phase transition process in
the Hermitian system with the variation of γ. The green line
denotes the topological phase transition process under the
variation of κ with a fixed γ (tan γ ¼ 2.4), on which four dots
with different colors are highlighted, exactly corresponding to the
four quantities of gain-loss in Fig. 2.
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before and after the phase transition point. As the module
values of eigenmodes at the two bands are the same,
the phases of field amplitudes are key elements to describe
their differences. φðEÞ is defined as realðEÞ=jEj to form
the eigenmode diagrams shown in Figs. 5(b)–5(e). The
four diagrams are the modes at the upper band [Figs. 5(b)
and 5(d)] and the lower band [Figs. 5(c) and 5(e)] before
and after the phase transition point, respectively. Figure 5
clearly shows that the eigenmodes exchange their positions
with each other in the process of the phase transition,
indicating the bands are inverted.
In conclusion, we demonstrate the existence of the

topological phase transition in a PT-symmetric CROW
system. An analytical algebraic relation tan γ ¼ cosh 2κ is
derived, revealing the precise condition of the appearance
of the topological phase transition decided by coupling
strength γ and quantity of gain-loss κ in the PT-symmetric
system. It is found that such phase transition only depends
on the gain-loss contrast, especially for the PT-symmetric
configuration, providing neutral topological edge states.
The topological phase transition process is clearly verified
by the field distribution, the transmission response, and
the band inversion. This research provides a new degree of
freedom to modulate the topological phase transition and
guide the realization of the active control of the topological
states. Besides this, the work presents the condition for

exploring topological phase transitions in high-dimensional
non-Hermitian systems.
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