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When material parameters are fixed, optical responses of nanoresonators are dictated by their shapes and
dimensions. Therefore, both designing nanoresonators and understanding their underlying physics would
benefit from a theory that predicts the evolutions of resonance modes of open systems—the so-called
quasinormal modes (QNMs)—as the nanoresonator shape changes. QNM perturbation theories (PTs) are
one ideal choice. However, existing theories developed for tiny material changes are unable to provide
accurate perturbation corrections for shape deformations. By introducing a novel extrapolation technique,
we develop a rigorous QNM PT that faithfully represents the electromagnetic fields in perturbed domain.
Numerical tests performed on the eigenfrequencies, eigenmodes, and optical responses of deformed
nanoresonators evidence the predictive force of the present PT, even for large deformations. This opens
new avenues for inverse design, as we exemplify by designing super-cavity modes and exceptional points
with remarkable ease and physical insight.
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Plasmonc and Mie nanoresonators that confine light in
tiny volumes play an essential role in nanophotonics [1].
Their modelling requires full-wave simulations [2], and
accordingly their design is computationally expensive,
even with advanced inverse design algorithms [3,4] that
smartly explore parameter space for repeated wave-exci-
tation instances. Complementary approaches, with a better
balance between physics and numerics, are desirable.
Here lies the worth of cavity perturbation theory (PT), a

well-known principle permeating various branches of phys-
ics, which predicts resonances of new (perturbed) problems
from resonances of an initial (unperturbed) one [5]. For tiny
perturbations, accurate predictions of frequency shifts of
individual modes are delivered with single-mode first-order
PTs. For large perturbations, if a complete set of unperturbed
modes is known, exact solutions can be, in principle,
obtained with the modal superposition method. Initial con-
tributions on cavity PTs rely on Hermitian formalisms
(normal modes), along with a crucial technique, hereafter
called as the local-field correction (LFC),which increases the
accuracy of unknown (perturbed) modal fields by incorpo-
rating quasi-static depolarization fields in perturbation region
[6,7]. However, these initial Hermitian formalisms are
strictly valid only for closed systems, hardly legitimate for
high-Q dielectric resonators and largely inconsistent for low-
Q nanoresonators, see [8] and Sec. S2 of [9]. They have to be
replaced by non-Hermitian formalisms based on resonance
modes of open systems, the so-called quasinormal modes
(QNMs) [20].

Owing to issues on the basis completeness, non-
Hermitian cavity PTs have been mainly devoted to per-
mittivity changes inside resonator in seminal works [10,11]
and more recent ones [12], or to minute permittivity
changes outside the resonator [13]. The important case
of shape deformations—of great practical interest for
inverse design—involving both inward and outward per-
turbations has received comparatively minimal attention.
Only tiny deformations have been considered so far in the
restricted case of single-mode PTs [8,21].
In this Letter, capitalizing on these earlier works, we

address this shortcoming and propose a rigorous non-
Hermitian PT framework for shape deformations. The
framework is established on an advanced modal basis that
combines a restricted set of dominant QNMs with addi-
tional numerical modes [14,15]. This physically preserves
the insight of QNM expansions and mathematically guar-
anties the completeness of the modal expansion in the
interior and exterior of the resonator. The framework
additionally benefits from a completely novel extrapolation
technique that provides a faithful representation of the
perturbed modes in the perturbed region and naturally
implements the LFC at arbitrary perturbation order. The
extrapolation technique enables the derivation of exact
formulas for both first- and high-order perturbation cor-
rections and plays an essential role in the reported superior
performance. As shown by numerical tests, large deforma-
tions, with volume changes of typically 30–50% and high
metal-dielectric permittivity contrasts, can be accurately
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handled with a modest number of modes. As outlined in the
last part, our results open new perspectives for inverse
design in nanophotonics, a topic wherein brute-force
computation is insufficient and supplemental theoretical
insights are needed [22,23].
Figure 1 shows our notations. A body (nanoresonator) is

deformed into a perturbed one with its boundary changing
from ∂Vres to ∂V 0

res. The deformation is parametrized by
hðr∂Vres

Þn̂measuring perpendicular shift from ∂Vres to ∂V 0
res,

where n̂ denotes unit outward normal vector of ∂Vres and
r∂Vres

denotes coordinates on ∂Vres. The permittivity tensors
of the nanoresonator and background are denoted by εres and
εbg, respectively. Outward (h > 0) and inward (h < 0)
deformations result in material changes Δε≡ εres − εbg
and −Δε, respectively, in perturbed domains denoted by
Pres and Pbg, respectively. The remaining unperturbed
domain is denoted byUres;bg belonging either to the resonator
(res) or background (bg).
Field extrapolation in perturbed domains.—We start

from the Lippman-Schwinger integral equation expressing
the electric fields of the perturbed modes, Ẽp, with the
Green’s tensor of the unperturbed system, Gu: ẼpðrÞ ¼
ω2

R
Guðr; r0;ωÞfðr0ÞΔεðωÞẼpðr0Þd3r0 [9], where fðrÞ is a

filling function with values of 1 and −1 for r ∈ Pres and
Pbg, respectively, and 0 elsewhere.
To expand the perturbed modes Ẽp with a complete basis

for both inward and outward deformations, we consider a set
of unperturbedmodes Ẽu composed of a subset of dominant
QNMs and additional numerical modes [14]. Highly accu-
rate reconstructions in this modal basis have been recently

obtained for complex problems, involving noncompact
shapes (e.g., resonator dimers) and nonuniform environ-
ments (e.g.,metallic substrates) [15], aswell as gratingswith
their many inevitable branch cuts in the complex-frequency
plane [24]. However, for shape deformations, directly
expanding Ẽp into the Ẽu basis would lead to nonuniform
convergence owing to field discontinuity across ∂Ves, see
[7,21]. To bypass this issue in a systematic way, we here
develop a novel extrapolation technique that allows us to
consider large deformations. First, disregarding Pres;bg

domains, we perform the modal expansion in the Ures;bg

domains only, ẼpðrÞ ¼
P

n αnẼu;nðrÞ, αn being the expan-
sion coefficient. Then, we take a key step and extrapolate Ẽp

inPres;bg from fields inUres;bg with a Taylor expansion of Ẽp

about ∂Vres: ẼpðrÞ ¼
P∞

j¼0ðlj=j!Þ∂⃗j
n̂Ẽpðr∂Vres

þ δ½h�n̂Þ.
Here δ½h�≡ 0− for h > 0 and otherwise δ½h�≡ 0þ; r ¼
ln̂þ r∂Vres

with l ∈ ½0; h�; ∂⃗j
n̂fðr∂Vres

Þ≡ ðn̂ · ∇Þjfðr∂Vres
Þ.

The Taylor expansion is justified because the materials in
Pres;bg are the same as inUres;bg and electric fields in uniform
domains (without permittivity discontinuities) are analytic.
The volume-integral Lippman-Schwinger equation is

then reformulated as a surface-integral equation over
∂Vres [9]:

ẼpðrÞ ¼
I

∂Vres

Guðr; r∂Vres
− δ½h�n̂;ωÞP̃Geomðr∂Vres

Þd2r∂Vres
;

ð1aÞ

with surface polarization P̃Geom given by

P̃Geomðr∂Vres
Þ ¼

X∞

k¼0

X∞

j¼0

∂⃖k
n̂Δεcjk∂⃗j

n̂Ẽpðr∂Vres
þ δ½h�n̂Þ:

ð1bÞ

Here cjk ¼ðhkþjþ1=k!j!Þf1=ðkþ jþ1Þþ κm½2h=ðkþ jþ
2Þ�þ κg½h2=ðkþ jþ3Þ�g with κm;g denoting the mean and

Gaussian curvatures of ∂Vres, respectively; fðr∂Vres
Þ∂⃖k

n̂≡
ðn̂ · ∇Þkfðr∂Vres

Þ.
Equations (1) are the cornerstone of our lately developed

PT. They define a new integral formulation for electric
fields of perturbed modes, which shall allow us to con-
veniently derive PT formulae to arbitrary orders.
Perturbation theory.—Injecting the modal expansions of

Ẽp and Gu [2] in Eqs. (1), we obtain a linear eigenvalue
equation for perturbed modes fω̃p; jαi≡ ½α1; α2; � � ��g
(Sec. S5 of [9]):

H0jαi ¼ ω̃p½IþHp�jαi: ð2aÞ

HereH0 is a diagonal matrix with diagonal elements being
frequencies of unperturbed modes; I denotes the identity

(a)

(b)

(c)

FIG. 1. Overview of the PT framework and notations. (a) A
body (nanoresonator) is deformed with boundary changing from
∂Vres to ∂V 0

res. (b) Geometrical deformation is parametrized by
hðr∂Vres

Þn̂. (c) The perturbed body is modeled as the unperturbed
body dressed (augmented) by a surface-polarization distribution,
P̃Geom given by Eq. (1b). In (b)–(c), Ẽ�δ½h� ≡ Ẽðr∂Vres

� δ½h�Þ
with δ½h�≡ 0− for h > 0 and otherwise δ½h�≡ 0þ.
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matrix. Hp accounts for the perturbation contribution, for
which we make the first-order approximation

Hp;nm ≃ hðẼbg
u;nÞ�jhΔεðω̃u;mÞjẼres

u;mi∂Vres
; ð2bÞ

where hðẼbg
u;nÞ�jhΔεðω̃u;mÞjẼres

u;mi∂Vres
≡ H

∂Vres
Ẽu;nðr∂Vres

þ
0þn̂Þ · hðr∂Vres

ÞΔεðω̃u;mÞ · Ẽu;mðr∂Vres
þ 0−n̂Þd2r∂Vres

, and

Ẽbg
u;n and Ẽres

u;n denote Ẽu;n at the outer (background) and
inner (resonator) sides of ∂Vres, respectively.
Equations (2) constitute our first important result, a

rigorous first-order PT for deformation problems of open
systems. The essential difference with earlier works [12,13]
is the interplay of the inner and outer fields at the resonator
boundary in the perturbation matrix Hp. The interplay
guaranties that for vanishing h, Ẽp;n uniformly converges
towards Ẽu;n for all n—whereas earlier formalisms do so
only nonuniformly, see Sec. S2 of [9]—thereby allowing us
to obtain accurate predictions for large deformations with a
small number of retained QNMs. Accordingly, it is unnec-
essary to include numerical modes practically (at least for
the first-order PT corrections). For small deformations, the
first-order single-mode frequency shift,Δω̃n ≡ ω̃p;n − ω̃u;n,
is given by

Δω̃n ≃ −ω̃u;nhðẼbg
u;nÞ�jhΔεðω̃u;nÞjẼres

u;ni∂Vres
; ð3Þ

which is consistent with earlier works on normal-mode PTs
[7]—in the limit of Imðω̃u;nÞ → 0 and ImðẼu;nÞ → 0—and
QNM PTs using the LFC for tiny deformations [8,21].
Validation.—We consider a silicon rod in air that

supports Mie’s resonances indexed by ðq; n; lÞ—the azi-
muthal, radial, and longitudinal numbers. Figure 2(a)
shows the field distribution of a (1,1,1) mode, which is
selected for the following study. In this initial study aiming
at the validation of the first-order PT of Eq. (2), the rod is
only slightly deformed by a uniform radial change h ¼ b.
The left panel in Fig. 2(b) compares the values of Δω̃
predicted from Eq. (3) with exact numerical data obtained
with the QNMEig solver of the freeware MAN (Modal
Analysis of Nanoresonators) [15,25] implemented with
COMSOLMultiphysics. The quantitative agreement, along
with similar observations in Figs. S2 and S3 [9], evidences
the soundness of Eq. (3) in the limit of vanishing
perturbations.
The first-order PT can be generalized to high-order ones

by retaining high-order terms in Hp when solving the
eigenvalue problem of Eq. (2a). As an example to validate
our theory at high order, we consider another radial
deformation h ¼ b sinð2πz=dÞ, where z denotes the longi-
tudinal coordinate. In this case, the first-order correction
vanishes since h is odd with respect to z, and the second-
order correction is dominant. As evidenced in the right
panel of Fig. 2(b) and also in Figs. S4 and S5 [9], the

second-order PT accurately predicts the quadratic fre-
quency shift Δω̃ of the (1,1,1) mode, with a residual error
due to modal truncation [26]. Compared to first-order
results, the accuracy improvement is obvious. However,
the second-order PT requires a much larger number of
modes to reach the convergence. Balancing between
accuracy and effectiveness suggests us to use the first-
order PT for the following studies.
Reconstruction of scattered fields.—The use of the

frequency shift formula of Eqs. (2) or (3) for designing
nanoresonators with tailored resonance wavelengths or
quality factors will be discussed later. In inverse design,
the possibility of predicting the nanoresonator response
with unperturbed modes is equally useful [3,4,27]. Thus we
consider a perturbed nanoresonator driven by an incident
field Ein and denote by Esca the scattered field. By taking
into account volume polarization ΔεEin due to the incident
field, Eqs. (1) is generalized: EscaðrÞ ¼

R
Vres

Guðr;
r0;ωÞΔεðωÞEinðr0Þd3r0 þ

H
∂Vres

Guðr; r∂Vres
0 − δn̂;ωÞPGeom

ðr∂Vres
0Þd2r∂Vres

0 (see Sec. S8 of [9]) where PGeom is
expressed with Eq. (1b) using the total field Ein þEsca.
By expanding Esca with unperturbed modes, Esca ¼P

n βnẼu;n, and performing the modal expansion for Gu,
we obtain a linear equation for jβi≡ ½β1; β2; � � ��:

H0jβi ¼ ω½IþHp�jβi þ ω½jBi þ jSi�; ð4Þ

where the source terms jBi≡ ½B1;B2; � � �� and jSi≡
½S1; S2; � � �� with Bn ¼

R
Vres

Ẽu;nðrÞΔεðω̃nÞEinðrÞd3r and

(a) (b)

FIG. 2. Validation of the perturbation theory for a silicon rod
(radius a ¼ 200 nm, height d ¼ 400 nm, and permittivity
εsi ¼ 12.96) in air. (a) Field distribution of a (1,1,1) Mie’s mode
on the rod surface. The QNM frequency is ω̃u ¼ 0.74−
0.034ieV. (Top) Real part of perpendicular normalized displace-
ment field; (bottom) amplitude of real part of (vectorial) parallel
normalized electric fields. The arrows specify the field direction.
(b) Modal eigenfrequency shifts, Δω̃≡ ΔΩ̃ − iΔΓ̃=2, as the
nanorod radius varies either uniformly (left, h ¼ b) or sinus-
oidally [right, h ¼ b sinð2πz=dÞ]. The (left) linear and (right)
quadratic dependencies of Δω̃ on deformation parameter b are
accurately predicted using the first-order and second-order PTs,
respectively.
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Sn ¼ hðẼbg
u;nÞ�jhΔεðω̃nÞjEini∂Vres

. Note that, for Ein ¼ 0

(jSi ¼ jBi ¼ 0), Eq. (4) reduces to the eigenvalue equation
for perturbed modes; when the perturbation vanishes
(Hp ¼ 0 and jSi ¼ 0), jβi’s become modal excitation
coefficients of the unperturbed nanoresonator. Equation (4)
allows us to reconstruct optical responses of perturbed
nanoresonators and constitutes the second main result of
this Letter.
Application.—When performing inverse design of a

photonic device, one explores a large parameter space to
optimize several electromagnetic observables with typically
gradient based algorithms through repeated simulations of
Maxwell’s equations. The developed PT offers new oppor-
tunities for geometrical optimization. First,QNMexpansions
make the physics transparent, thereby helping the interpre-
tation of optimized results. Second, the computational cost of
problems involving broad bandwidth, multifrequency bands
or multi-illumination instances can be dramatically reduced
[2], benefiting from the analyticity of objective functions.
Third, since nanoresonator responses are generally driven by
a few QNMs, the optimization problem in large parameter
space becomes more tractable [4,23], and the expensive task
of computing gradients, with either finite schemes or the
adjoint method, is simplified due to small-dimensional
matrix problems of Eqs. (2) or (4). How far these equations
may allow us to accurately explore parameter space—before
being obliged to locally restabilize the optimization by
computing again a few dominant QNMs—decisively impact
the effectiveness of the present PT.
To quantify the exploration capability of Eqs. (2) that take

into account deformation-induced couplings between differ-
ent modes, we consider large spheroidal and cuboidal
deformations of a silver sphere. The results are summarized
in Fig. 3. For solving Eq. (2), 15modes—whose frequencies
and modal profiles are shown in Fig. 3(a)—plus their 15
complex conjugated counterparts f−ω̃�

u;n; Ẽ
�
u;ng are consid-

ered, thereby giving a 30 × 30 Hp matrix. Figure 3(b)
compares the theoretical predictions of the fundamental-
dipole-QNM frequencies of the deformed geometries with
the numerical data. Note that, for spheroids, the original
dipole triplet is split into a doublet and a singlet. An overall
quantitative agreement, up to deformations with 30–50%
volume changes, is achieved. This level of accuracy for large
deformations, using a few QNMs, is largely unattainable
with available cavity QNM [13,16] or normal-mode PTs [7]
(see the comparisons in Fig. S1 [9]). In Fig. 3(c), we
additionally compare the theoretical predictions of Eq. (4)
for the extinction-cross-section spectra of cuboidswith exact
numerical results obtained with the boundary element
method, showing again quantitative agreement. More
numerical evidences are shown in Figs. S6–S9 [9].
We further exemplify the potential of the present PT for

inverse design by designing super-cavitymodes (SCMs) and
exceptional points (EPs) (a general workflow of employing
the PT for inverse design is detailed in Sec. S9 of [9]). SCMs,

the analogues of bound states in the continuum for finite-size
structures, offer high Q’s owing to destructive radiation
interferences [28], while EPs with two or more coalescing
states have implications for lasing [29] and sensing [30]
applications. Hereafter, we consider a complex geometry, a
Si dumbbell-shaped resonator deposited on an Au substrate
coated with a thin SiO2 film. Since SCMs and EPs can be
constructed with a bimode coupled system by carefully
tuning modal coupling constants, we restrict the parameter
space to two diameters, D1 and D2 [see Fig. 4(a)]. The
design begins with a guessed geometry, D1 ¼ D2 ¼
600 nm and h ¼ 500 nm (height), for which we compute
the QNMs with the solver QNMEig [15]. We further select
two QNMs, denoted by M1 and M2—that are frequency-
protected from others, i.e., jω̃u;n − ω̃u;Mi

j ≫ jHp;nMi
j for

n ∉ fM1;M2g—thereby defining an isolated bimode
coupled system. Figure 4(b) shows the modal profiles of
M1;2 with azimuthal order m ¼ 0. Now, the calculation of
the perturbedQNMswith Eqs. (2) amounts to solve a simple
2 × 2 eigenmatrix. As shown with Fig. 4(c), we can directly
and explore the entire parameter spacewith Eqs. (2), without
requiring any further time-consuming full-wave computa-
tions of the QNMs.
An EP is obtained for D2 ¼ 1.2558h when the

two eigenvalues coalesce as D1 is varied, see details in
Fig. 4(d). On the other hand, the design of SCMs, revealed

(a) (c)

(b)

FIG. 3. Test for large deformations of a silver sphere (50-nm
radius) in air. Two deformations, into spheroids or cuboids, are
considered. Silver is modeled by a Drude permittivity εAg ¼
1 − ω2

p=ðω2 þ iωγÞ with ℏωp ¼ 9 eV and ℏγ ¼ 0.021 eV.
(a) (Left) Eigenfrequencies ω̃u ≡ Ωu − iΓu=2 of dipole (blue)
and quadrupole (red) QNMs. Degeneracy factors are given in
parenthesis. (Right) Amplitudes of perpendicular normalized
electric displacement fields for dipole, quadrupole and hexapole
QNMs with azimuthal order m ¼ 0. (b) Eigenfrequencies ω̃p ≡
Ωp − iΓp=2 of perturbed dipole QNMs for spheroids and cuboids
as aspect ratios b=a vary (for small deformations, b=a ≃ 1).
(c) Extinction-cross-section spectra of cuboids for several values
of b=a. 2 × 15 QNMs are used in (b),(c); additional static QNMs
at zero frequency are taken into account in (c) [9].
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by their high-Q values, does not necessitate a shape
optimization as precise as that for EPs. For instance,
constraining D1 ¼ D2, we observe in Fig. 4(e) that Qp

of one mode is significantly increased for D1 ¼ 650 nm,
identifying a SCM with a 20-fold Q enhancement [see
Fig. 4(f) for the mode profiles]. Again, no need for further
iterative full-wave computations; the SCM is directly found
by exploring the parameter space with Eq. (2). Additionally
note the quantitative agreement between the theoretical
predictions and full-wave numerical data; and, accordingly,
further optimization iterations are thus unnecessary.
Conclusions.—The present PT establishes a general and

rigorous framework for predicting the optical responses of
largely deformed resonators from the sole knowledge of the
initial unperturbed modes. There is, in principle, no
restriction on the resonator geometry and constitutive
materials. It offers unprecedented numerical efficiency
and physical transparency, making it a good tool for
nanoresonator design.
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FIG. 4. Application of the PT for designing exceptional point (EP) and high-Q super-cavity mode (SCM). (a) A Si dumbbell-shaped
nanoresonator sits on an Au substrate coated with a 50-nm-thick SiO2 layer. The dumbbell consists of three equal-high cylinders (total
height h ¼ 500 nm) with diameters D1, D2, and D1 (from top to bottom). The Au permittivity is approximated by the Lorentz-Drude
model εAuðωÞ ¼ ε∞ − ω2

p;1=ðω2 þ iγ1ωÞ − ω2
p;2=ðω2 − ω2

0 þ iγ2ωÞ with ε∞ ¼ 6, ℏωp;1 ¼ 8.67 eV, ℏγ1 ¼ 0.1 eV, ℏωp;2 ¼ 3.65 eV,

ℏγ2 ¼ 2.15 eV, ℏω0 ¼ 7.38 eV. (b) Field distributions of azimuthal-component electric fields, ReðẼu;ϕÞ, of two modesM1 andM2 with
azimuthal order m ¼ 0 obtained forD1 ¼ D2 ¼ 1.2h. (c) Eigenfrequencies calculated with Eqs. (2) for perturbed QNMs resulting from
M1 −M2 coupling as the parameter space (D1 −D2) is spanned. (d) Eigenfrequencies for D2 ¼ 1.2558h. The EP is labeled.
(e) Resonance frequencies and quality factors for D1 ¼ D2. The SCM with Qp ≃ 240 is labeled in the lower panel. (f) SCM-field
distribution ReðẼp;ϕÞ.
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