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A laser is composed of an optical resonator and a gain medium. When stimulated emission dominates
mirror losses, the emitted light becomes coherent. We propose a new class of coherent light sources based
on wavelength sized regular structures of quantum emitters whose eigenmodes form high-Q resonators.
Incoherent pumping of few atoms induces light emission with spatial and temporal coherence. We show
that an atomic nanoring with a single gain atom at the center behaves like a thresholdless laser, featuring a
narrow linewidth. Symmetric subradiant excitations provide optimal operating conditions.

DOI: 10.1103/PhysRevLett.124.253603

Introduction.—Conventional lasers consist of an optical
cavity filled with a gain medium, typically comprised of an
ensemble of energetically inverted emitters amplifying the
light field via stimulated emission. Pioneering experiments
have realized lasers with the most minimalistic gain
medium yet, a single atom [1–8]. Corresponding theoretical
quantum models have been studied extensively for several
decades [9–12]. Any standard model of a laser, however,
still features a macroscopic optical resonator supporting the
corresponding laser light mode. Technically, the noise of
the cavity mirrors is a substantially limiting factor for the
frequency stability of a laser. This can be reduced when
working in the bad cavity regime, such that the coherence is
stored in the atomic dipoles rather than the light field. In
such superradiant lasers [13–17], the properties of the
emitted light are governed by the gain medium rather than
the resonator.
In this work, we go one step further, removing the cavity

altogether, and consider a nanoscale system. Atomic
quantum emitters provide for the necessary gain while
simultaneously acting as a resonator, when they are
partially illuminated by incoherent light. In principle, the
size of the entire setup can be reduced to even below the
order of the laser wavelength. On top of this, its perfor-
mance is fully determined by the spectral properties of the
atomic medium. Since the atoms behave as a collective, the
single-atom spectral features do not constitute a funda-
mental limit. Thus, as we will show, the output light can
have a coherence time larger than that of a single atom.
As discovered recently, tailored dipole-coupled atomic

arrays possess collective eigenmodes with a very long
lifetime demonstrating analogous characteristics to a high-
Q optical cavity mode [18–20]. Such arrangements could
be implemented, e.g., by means of optical tweezers [21–23]
or superconducting qubit setups operating in the microwave
regime [24]. We study the prospects of implementing a
minimalistic subwavelength sized laser. As our generic
setup, we consider a single atom placed in the center of a

small ring comprised of identical emitters. The collective
couplings are mediated by virtual photon exchange through
the electromagnetic vacuum [6,25,26]. The eigenstates of
the outer ring take on the role of a resonator mode.
We show that such a minimal model constitutes a steady-

state coherent light source with a spectral linewidth well

FIG. 1. Coherent light emission from a partially pumped atomic
array. (a) A ring of atoms with an additional atom in its center
incoherently pumped with a rate ν. (b) The atoms decay at a
spontaneous decay rate Γ0 and are collectively coupled to the
center atom with dispersive coupling Ωp and dissipative coupling
Γp, respectively. In turn, the ring atoms have couplings Ωij and
Γij among each other. The symmetric excitation exhibits a
collective decay rate Γcoll. (c) The field intensity generated in
the steady state according to Eq. (3) for a ring of N ¼ 11 atoms in
the xz plane with y ¼ 2.5λ0, d ¼ λ0=5, and ν ¼ 0.1Γ0. (d) The
field intensity in the xy plane with z ¼ 2.5λ0.
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below the single atom decay rate. Therefore, it can be
viewed as a minimal implementation of a laser. The
collective nature of the dipole-dipole couplings leads to
strong quantum correlations within the atoms and an
inherent emission of a coherent field. Optimal operation
is achieved when the collective state in the ring atoms
features a single subradiant excitation only.
Model.—We consider N identical two-level atoms with

states jei and jgi each, separated by ω0 and arranged in a
ring geometry at an interatomic distance of d≲ λ0 ¼
2πc=ω0. An additional gain atom is placed in the center
of the ring as depicted in Fig. 1(a) and is assumed to be
pumped to its upper level incoherently at a rate ν. The
corresponding raising (lowering) operators of the ith atom
are σ�i for i ∈ f1; 2;…; N; pg (the index p corresponds to
the central, pumped atom). The excited state is subject to
spontaneous emission with a rate Γ0. All transition dipoles
μi are chosen such that they point in the z direction.
This results in an effective dipole-dipole interaction [25],

so that the atomic ring acts like a resonator [18] coupled to
the gain atom in its center.
Using standard quantum optical techniques [27],

we obtain a master equation for the dynamics, _ρ ¼
i½ρ;H�þLΓ½ρ�þLν½ρ�, where the incoherent pumping of
the central atom is given by Lν½ρ� ¼ ðν=2Þð2σþpρσ−p −
σ−pσ

þ
pρ − ρσ−pσ

þ
p Þ. The Hamiltonian in the interaction

picture reads

H ¼
X

i;j∶i≠j
Ωijσ

þ
i σ

−
j ; ð1Þ

while the Lindblad operator accounting for collective
spontaneous emission reads

LΓ½ρ� ¼
X

i;j

Γij

2
ð2σ−i ρσþj − σþi σ

−
j ρ − ρσþi σ

−
j Þ: ð2Þ

The collective coupling rates Ωij and Γij are given by the
overlap of the transition dipole of the ith atom with the
electric field emitted by the jth atom [28]. We compute
the emitted field intensity [28] as

IðrÞ ¼ hEþðrÞE−ðrÞi; ð3Þ
The steady-state intensity is shown in Figs. 1(c) and 1(d)

for typical operating conditions.
Continuous collective emission.—Our goal is to find

operating regimes where the system emits coherent light
with a narrow linewidth. As the configuration is rotation-
ally symmetric, we can expect the ring atoms to be driven
into a symmetric excitation state given as

jψ symi ¼
1ffiffiffiffi
N

p
XN

j¼1

σþj jgi⊗N: ð4Þ

In accordance with standard laser theory, we target
parameters for which a symmetric excitation of the ring

atoms constitutes a good cavity. To this end, we study the
stationary populations of different eigenstates of our
Hamiltonian from Eq. (1) during a time evolution starting
from the ground state as depicted in Fig. 2(a).
As shown in Fig. 2, we find that the two eigenstates

involving the symmetric single-excitation state in the ring
are occupied predominately at all times (except for the
ground state). These states are given by

jΨii ¼ aijgi⊗N ⊗ jei þ bijψ symi ⊗ jgi; ð5Þ

for i ∈ f1; 2g, where ai and bi depend on the particular
geometry with jaij2 þ jbij2 ¼ 1.
Note that the gain atom can only emit one photon at a

time. Hence, the single-excitation manifold dominates the
dynamics even for pump rates substantially larger than the
single-atom decay rate. This is shown in Fig. 2(b), where
we plot the occupation probability of different eigenstates
at steady state as a function of ν.
The fact that the ring forms a resonator can be seen

more clearly as follows. Let us assume that only the
symmetric state in the ring is populated. Thus, we can
rewrite the Hamiltonian in the subspace spanned by the
ground and excited state of the gain atom in the center, as
well as the ground state of the ring and its symmetric state
obtaining [28]

Hsym ¼ Ωsymσ
þ
symσ

−
sym þ

ffiffiffiffi
N

p
Ωpðσþsymσ−p þ H:c:Þ; ð6Þ

where Ωsym ¼ P
N
j¼2Ω1j is the dipole energy shift of the

symmetric state. Written like this, the Hamiltonian resem-
bles the Jaynes-Cummings Hamiltonian with the ring taking
on the role of the cavity mode. In this sense, the symmetric
subspace lowering operator σ−sym ≔ jgi⊗Nhψ symj ⊗ 1p can
be interpreted as the photon annihilation operator of our
“cavity.” The coupling between the gain atom and the cavity
is then determined by Ωp.

(a) (b)

FIG. 2. Dissipative system dynamics. (a) Time evolution of the
eigenstates of the Hamiltonian from Eq. (1) for N ¼ 5 ring atoms
with an interatomic distance d ¼ λ0=2 and an incoherent pump
rate ν ¼ Γ0=2 starting from the ground state (GS). The state
jΨ1;2i features a large contribution from the symmetric state of
the ring atoms jψ symi and shows significantly higher populations
than all other excited eigenstates (gray lines) at all times.
(b) Stationary population of the eigenstates for different pump
rates. We can see that, even for large pump rates ν > Γ0, the
symmetric single-excitation states dominate.
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If we neglect the dissipative coupling between the central
atom and the atoms forming the ring, i.e., Γp ¼ 0, we
can rewrite the decay of the system as L½ρ� ¼ Lν½ρ� þ
L0½ρ� þ Lsym½ρ�, with

L0½ρ� ¼
Γ0

2
ð2σ−pρσþp − σþpσ−pρ − ρσþp σ−pÞ; ð7aÞ

Lsym½ρ� ¼
Γsym

2
ð2σ−symρσþsym − σþsymσ−symρ − ρσþsymσ−symÞ:

ð7bÞ

Minimizing the decay rate of the ring atoms is important,
but in order to build up population within the ring, we need
an efficient coupling to the gain atom as well. In analogy to
the Jaynes-Cummings model, we define a cooperativity
parameter [28] C ≔ NΩ2

p=ðΓ0ΓsymÞ. An efficient coherent
coupling of the ring atoms to the gain atom is achieved
when C > 1. As we can see in Fig. 4(b), we reach this limit
at extremely small distances or at a distance where Γsym is
minimal (see Fig. 3). The cooperativity becomes large at
d < 0.1λ0 since, for d → 0, the coherent coupling diverges.
Yet, this is also the limit where the energy difference Ωsym

is large, which detunes the ring atoms from the gain atom.
Furthermore, due to the superradiant loss of the ring in this
limit, the emitted light features thermal statistics rather than
coherence. Consequently, we find that the optimal param-
eter regime, indeed, lies where the ring atoms show a
subradiant behavior, i.e., at the points highlighted in Fig. 3.
As seen in Fig. 4(a), the dissipative coupling of the central

atom vanishes at points where the symmetric state shows
suppressed spontaneous emission (white dots). Hence, the
loss during the excitation transport from the gain medium to
the ring is reduced as well. Note that it is important to
distinguish the dissipative coupling from a physical decay
rate: pairwise couplings can become negative, yet any
collective state decays with a positive rate [25].
Photon statistics and spectral properties.—We have now

identified a regime where our system resembles the typical

setup of a single-atom laser. In order to study the statistical
properties of the emitted light we calculate the normalized
second-order correlation at zero time delay gð2Þð0Þ of the
electric field intensity. In the far-field, r ≫ λ0, where
the intensity correlation function becomes independent
of the position [28] and is given by

gð2Þð0Þ ¼
P

ijklhσþi σþj σ−k σ−l i
jPmnhσþmσ−n ij2

: ð8Þ

Coherent light exhibits a Poissonian statistic implying
gð2Þð0Þ ¼ 1 [27,33]. In addition, we calculate the amount of
emitted light, i.e., Iout ≔

P
ij Γijhσþi σ−j i.

In Fig. 5(a), we can see that points of coherent light
emission where gð2Þð0Þ ¼ 1 are achieved along a curve
strongly resembling the optimal subradiance parameters
shown in Fig. 3. The points where gð2Þð0Þ ¼ 0 correspond
to the situation where the gain atom decouples from the
cavity atoms, since then, only the single atom in the center
can emit light, and we observe antibunching. However, this
regime does not coincide with “lasing,” since the ring atoms
are not occupied. Simultaneously, the intensity shown in
Fig. 5(b) is small, but still finite when the emitted light is
coherent. This is because coherences can only build up
when the loss from the atoms in the ring is sufficiently low
(Γsym is small), which also reduces the amount of light
emitted. Note, also, that our system behaves more like a
superradiant laser than a conventional one. Such super-
radiant lasers exhibit an inherently small photon number
[13]. Similarly, typical single-atom lasers also have weak
output powers [2,34].
In order to analyze the emitted light in more detail, we

compute its spectral linewidth. Therefore, we calculate the
emission spectrum by means of the Wiener-Khinchin
theorem [28,35]. It is given as the Fourier transform of

FIG. 3. Super- and subradiance of the symmetric state. The
decay rate of the symmetric state Γsym as a function of the atom
number in the ring and their interatomic distance. The white dots
highlight specific interatomic distances where the decay of the
symmetric state is the smallest (subradiant).

(a) (b)

FIG. 4. Coupling of the central gain atom to the outer ring.
(a) The dissipative coupling Γp between the central atom and the
ring atoms as a function of the atom number N and the
interatomic distance d. One can see that it becomes negligible
at the points where jψ symi is subradiant (white dots). (b) Coop-
erativity C for different distances and atom numbers. The
cooperativity is large when d → 0 due to the divergent behavior
of Ωp, or when Γsym is small.
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the first-order coherence function, gð1ÞðτÞ≔P
i;jhσþi ðτÞσ−j i.

The spectrum has a Lorentzian shape, thus, we compute the
linewidth Δν as the FWHM. In Fig. 5(c), we show the
linewidth as a function of N and the interatomic distance d.
Once again, we find that the linewidth is small (Δν < Γ0) at
the points where the symmetric state is subradiant. It can be
seen that, in order to maintain coherent light emission, the
interatomic distances need to become smaller for an
increasing number of atoms in a ring of constant radius.
Note that, in order to treat larger atom numbers in the

above calculations, we have truncated the Hilbert space at
the second-excitation manifold [28]. Since the single-
excitation subspace usually dominates (as shown in
Fig. 2), neglecting any state containing more than two
excitations is well justified.
On the one hand, comparing the linewidth shown here to

the typical linewidth of a conventional laser as given by the
Schawlow-Townes limit [36] is difficult. In order to obtain
such a limit, one would need to linearize the system around
a large classical field amplitude, which our system does not
have. A similar approximation may be possible for very
high atom numbers, but this would go beyond the scope of
this Letter. On the other hand, as we have mentioned
before, our system behaves more like a superradiant laser.
This is also true for the linewidth of the emitted light in that
it is determined by the linewidth of the atoms rather than an
optical resonator.

Thresholdless behavior.—In standard lasing models,
coherent output light is achieved from a certain input
power threshold on. Above threshold, the intensity of the
emitted light increases drastically. In an effort to identify
such a threshold in our setup, we compute the properties of
the output light as a function of the pump strength of the
gain atom.
The system does not exhibit a threshold. Such a thresh-

oldless behavior has been observed in single-atom lasing
setups [2]. As we can see in Figs. 6(a) and 6(b), the output
intensity grows as soon as the pump rate becomes nonzero.
At the same time, the photon statistics of the emitted field
are Poissonian, i.e., gð2Þð0Þ ¼ 1, for arbitrarily low pump-
ing rates [see Fig. 6(c)]. The only point at which the photon
statistics change is when the pump rate becomes large,
ν ∼ 10Γ0, such that the emitted light starts to reproduce the
statistics of the input field. It can also be seen in Fig. 6(a)
that above this point, the output intensity is reduced. As one
would expect, the linewidth of the emitted field is small
(Δν < Γ0) as long as the light is coherent [see Fig. 6(d)].
When the incoherent pumping rate ν is increased, states
outside the symmetric subspace are occupied, which leads
to a slight increase in the linewidth. However, by increasing
ν further, the linewidth decreases again and approaches
Γsym, as the central atom decouples from the ring atoms,
the light is emitted from the ring in the subradiant
symmetric state.
Conclusions.—We predict that a continuously pumped

single atom surrounded by a nanoring of identical atoms
could act as a minimal, subwavelength sized implementa-
tion of a laser. Under suitable operating conditions, the
system will emit spatially and temporarily coherent light

(a)

(b)

(c)

FIG. 5. Intensity and statistics of the emitted light. (a) Steady-
state second-order correlation as a function of the ring atomnumber
and atom spacing. For each atom number N there are specific
interatomic distances d where the emitted light changes from
thermal-like light emission (red), passing over regions of Poisso-
nian statistics (white), to sub-Poissonian properties (blue). (b) The
radiated intensity Iout for the same parameter region. Where
gð2Þð0Þ ¼ 1 the intensity is maximal, regardless of the atom
number. (c) The spectral linewidth Δν for the same parameters.
It reduces to well below Γ0. The pump rate was ν ¼ 0.1Γ0. As
before, the white dots indicate subradiance of the symmetric state.

(a) (b)

(c) (d)

FIG. 6. Thresholdless coherent light emission. (a) Iout as a
function of the pump rate ν for N ¼ 5, d ¼ λ0=2 exhibiting a
maximum from ν ≈ 4Γ0 onwards. (b) A zoom in to the weak
pump region shows the immediate onset of the intensity Iout at
small ν. (c) The second-order correlation gð2Þð0Þ in steady state
is 1 for finite, but small ν. (d) The radiative linewidth Δν (blue) in
the steady state stays well below the pump broadened linewidth
Γ0 þ ν of a single emitter (gray), and approaches the decay rate
Γsym of the symmetric state (yellow, dashed line).
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with Poisson statistics. Our analysis reveals a close analogy
to the Jaynes-Cummings model, where the outer ring atoms
take on the role of a high-Q cavity mode with the central
atom providing for gain. The system works best when
driven into a collective subradiant state with a single
excitation. In this limit, spontaneous emission is suppressed
and the operation strongly resembles the behavior of a
thresholdless laser [37]. While the implementation of such
a system in a pure form could be envisioned in optical
tweezer arrays of neutral atoms [21], analogous setups
based on quantum dots have been implemented and are
already operational in the pulsed excitation regime [38].
There are no principal lower physical limits on the size of

the system apart from the technical implementation of the
structure and its pumping. Hence, very high density arrays
of such lasers on a surface are possible.

We acknowledge funding from the European Union’s
Horizon 2020 research and innovation program under
Grant Agreement No. 820404 iqClock (R. H., D. P., and
H. R.) as well as from the Austrian Science Fund under
Project No. P29318-N27 (L. O.). The numerical simula-
tions were performed with the open-source framework
QuantumOptics.jl [39], and the graphs were produced with
the open-source library Matplotlib [40].

*raphael.holzinger@uibk.ac.at
[1] M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S.

Haroche, Phys. Rev. Lett. 59, 1899 (1987).
[2] J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J.

Kimble, Nature (London) 425, 268 (2003).
[3] L. Davidovich, J. M. Raimond, M. Brune, and S. Haroche,

Phys. Rev. A 36, 3771 (1987).
[4] H. Walther, Phys. Scr. T23, 165 (1988).
[5] K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, Phys. Rev.

Lett. 73, 3375 (1994).
[6] O. Astafiev, K. Inomata, A. Niskanen, T. Yamamoto, Y. A.

Pashkin, Y. Nakamura, and J. S. Tsai, Nature (London) 449,
588 (2007).

[7] G. Rastelli and M. Governale, Phys. Rev. B 100, 085435
(2019).

[8] M. Löffler, G. M. Meyer, and H. Walther, Phys. Rev. A 55,
3923 (1997).

[9] D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett.
54, 551 (1985).

[10] Y. Mu and C. M. Savage, Phys. Rev. A 46, 5944 (1992).
[11] T. Pellizzari and H. Ritsch, J. Mod. Opt. 41, 609 (1994).
[12] T. Salzburger, P. Domokos, and H. Ritsch, Phys. Rev. A 72,

033805 (2005).
[13] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Phys.

Rev. Lett. 102, 163601 (2009).
[14] D. Meiser and M. J. Holland, Phys. Rev. A 81, 033847

(2010).
[15] S. Bedoui, M. Lopes, W. Nicolazzi, S. Bonnet, S. Zheng, G.

Molnár, and A. Bousseksou, Phys. Rev. Lett. 109, 135702
(2012).

[16] T. Maier, S. Krämer, L. Ostermann, and H. Ritsch, Opt.
Express 22, 13269 (2014).

[17] C. Hotter, D. Plankensteiner, L. Ostermann, and H. Ritsch,
Opt. Express 27, 31193 (2019).

[18] M. Moreno-Cardoner, D. Plankensteiner, L. Ostermann,
D. E. Chang, and H. Ritsch, Phys. Rev. A 100, 023806
(2019).

[19] M. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V.
Porto, A. V. Gorshkov, and D. Chang, New J. Phys. 20,
083048 (2018).

[20] K. E. Ballantine and J. Ruostekoski, Phys. Rev. Research 2,
023086 (2020).
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