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We experimentally realized Floquet topological photonic insulators using a square lattice of direct-
coupled octagonal resonators. Unlike previously reported topological insulator systems based on microring
lattices, the nontrivial topological behaviors of our system arise directly from the periodic evolution of light
around each octagon to emulate a periodically driven system. By exploiting asynchronism in the evanescent
coupling between adjacent octagonal resonators, we could achieve strong and asymmetric couplings in
each unit cell, which are necessary for realizing anomalous Floquet insulator behaviors. Direct imaging of
scattered light from fabricated samples confirmed the existence of chiral edge states as predicted by the
topological phase map of the lattice. In addition, by exploiting the frequency dispersion of the coupling
coefficients, we could also observe topological phase changes of the lattice from a normal insulator to
Chern and Floquet insulators. Our lattice thus provides a versatile nanophotonic system for investigating
2D Floquet topological insulators.
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Topological photonic insulators (TPIs) are artificial
materials whose electromagnetic band structures exhibit
nontrivial topological properties similar to those of electron
wave functions in solid-state topological insulators [1,2].
These materials have attracted a great deal of interest
recently due to their exotic properties, such as the existence
of topologically protected edge modes at the sample
boundaries, which could be used to realize robust optical
devices and other novel applications [3–5]. Topological
insulator behaviors in bosonic systems were first observed
at microwave frequencies by applying an external magnetic
field to a gyromagnetic photonic crystal [6]. Since the effect
of the magnetic field is weak at optical frequencies, the first
TPI was realized by emulating a synthetic gauge field in the
form of a coupling phase gradient in a two-dimensional
(2D) microring lattice [7–9]. Following these works, there
have also been realizations of TPIs in zero net magnetic
field by introducing a local gauge flux using next-nearest
neighbor hoppings, by exploiting crystalline symmetries, or
by breaking the spatial symmetry [10–15]. All of these
realizations of TPIs are based on static systems with time-
independent Hamiltonians whose energy bands are well
characterized by the Chern number. More recently, it was
shown that Floquet systems with periodically varying
Hamiltonians can exhibit much richer topological proper-
ties than static systems. In particular, Floquet systems can
support not only conventional Chern insulator (CI) [16,17]
but also anomalous Floquet insulator (AFI) edge modes in
the band gaps between energy bands with a trivial Chern
number [18–23]. In addition, Floquet systems are more
versatile than static systems since their topological behav-
iors can be tailored through suitable design of the driving
Hamiltonian. AFIs have been demonstrated at acoustic and

microwave frequencies using strongly coupled ring reso-
nators [24,25], and at optical frequencies using 2D arrays of
periodically coupled waveguides [26–28]. For the AFI
realization based on waveguide arrays, since many periods
are required to observe Floquet behaviors, the waveguides
must have long lengths, typically in the range of centi-
meters, making them unsuitable for implementation on an
integrated photonics platform.
In this Letter we report the first experimental realization

of an AFI on a nanophotonics platform using a lattice of
strongly coupled octagonal resonators in the silicon-on-
insulator (SOI) material system. Our system exploits the
periodic evolution of light around each microring to
emulate a periodically varying Hamiltonian [23]. We note
that our Floquet TPI lattice is fundamentally different from
the microring lattice recently reported in Refs. [10,11] in
that the latter realizes static Chern insulators by emulating a
local gauge flux using next-nearest neighbor hoppings via
off-resonant link rings between site resonators. However,
since next-nearest neighbor couplings are usually weak, it
is difficult to realize AFI behaviors in these lattices, which
requires strong coupling to observe. In our lattice, we
exploit the difference between synchronous coupling
(between waveguides with the same propagation constants)
and asynchronous coupling (between waveguides of differ-
ent propagation constants) to achieve strong and asym-
metric direct couplings in each unit cell, which enables us
to observe anomalous topological effects. Direct imaging of
the scattered light pattern shows clear evidence of the
formation of chiral AFI edge modes in the bulk band
gaps, which confirms the nontrivial topological behaviors
of these lattices. In addition, by varying the coupling
coefficients between the resonators, we could observe

PHYSICAL REVIEW LETTERS 124, 253601 (2020)

0031-9007=20=124(25)=253601(5) 253601-1 © 2020 American Physical Society

https://orcid.org/0000-0003-3418-7988
https://orcid.org/0000-0003-4314-9852
https://orcid.org/0000-0002-3921-1513
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.253601&domain=pdf&date_stamp=2020-06-24
https://doi.org/10.1103/PhysRevLett.124.253601
https://doi.org/10.1103/PhysRevLett.124.253601
https://doi.org/10.1103/PhysRevLett.124.253601
https://doi.org/10.1103/PhysRevLett.124.253601


topological phase changes in the lattice and identify, via the
formation of edge modes in the bulk band gaps, the
existence of both Floquet and Chern insulators in different
regions of the topological phase map. Our work thus
introduces a new, versatile integrated optics platform for
investigating Floquet topological behaviors in strongly
coupled 2D systems.
The topological system in our study is a square lattice of

direct-coupled microring resonators with identical reso-
nance frequencies, as depicted in Fig. 1(a). Each unit cell in
the lattice consists of four microring resonators, labeled A,
B, C, and D, with direct adjacent neighbor couplings
represented by coupling angle θ (corresponding to power
coupling coefficient κ2 ¼ sin2 θ). Assuming that light in
each microring propagates in only one direction, evanes-
cent wave coupling between two neighbor resonators
results in a reversal in the propagation direction, or “spin
flipping.” In this respect, our lattice is also different from
the microring lattice in Ref. [11] (and also the acoustic and
microwave lattices in Refs. [24,25]) in that the latter
requires link rings for coupling between adjacent resonators
to emulate a single-spin system, whereas our lattice is more
compact and allows for the natural spin flipping which
occurs between direct-coupled microrings. To realize
nontrivial topological behaviors, we allow the coupling
strengths between resonator A and its neighbors ðθaÞ to be
different from those between resonator D and its neighbors
ðθbÞ. The lattice is thus characterized by two coupling
angles θa ≠ θb. As light circulates around each microring,
it interacts periodically with its neighbors via the coupling
angles θa and θb, with each period equal to one round-trip

L of the microring. The lattice can thus be regarded as a
periodically driven Floquet system. Its Floquet-Bloch
Hamiltonian can be derived by transforming the microring
lattice into an equivalent coupled waveguide array, as
shown in Ref. [23] and briefly summarized in the
Supplemental Material [29].
In general, the band diagram of the quasienergy ε of the

microring lattice has three band gaps for every 2π change in
the round-trip phase of the microrings [or one free spectral
range (FSR) of the resonators]. We label these band gaps I,
II, and III, with band gaps I and III being symmetric about
εL ¼ π, as shown in the projected band diagram of a
sample lattice in Fig. 1(c). By computing the Chern number
associated with each quasienergy band and the winding
number for each band gap [19], we can characterize the
topological behavior of the lattice in each band gap as a
normal insulator, CI, or AFI. Figure 1(b) shows the
topological phase map of the microring lattice in band
gaps I and II as functions of the coupling angles ðθa; θbÞ.
Different topological behaviors can be realized by
varying the coupling strengths of the lattice. In particular,
AFI behavior is achieved only for strong coupling angles
satisfying the approximate relation θ2a þ θ2b⪆π2=8 with
θa ≠ θb. Moreover, the top left and bottom right regions
of the map (pink color), where the difference between θa
and θb is the greatest, are the only regions in which all three
band gaps are topologically nontrivial, with all exhibiting
AFI behavior. These regions can thus be used to unambig-
uously demonstrate AFI behavior in the microring lattice.
For example, for θa ¼ 0.473π and θb ¼ 0.026π, which
correspond to a lattice realized in this study, the projected
band diagram of a sample with 10 unit cells in the y
direction and infinite extent along x is shown in Fig. 1(c).
All three bulk band gaps support edge states of the AFI
type, since the winding numbers of the band gaps are
nonzero even though all the energy bands have trivial
Chern numbers.
In the physical implementation of the Floquet lattice, to

realize a square lattice of identical microrings, the coupling
gaps between the resonators must also be identical. In order
to obtain unequal evanescent coupling strengths for reso-
nators A and D in each unit cell, we used octagonal
resonators with the sides having identical lengths Ls but
alternating widths W1 and W2, as shown in Fig. 2(a).
Different coupling strengths between adjacent octagons can
be achieved by exploiting the difference between synchro-
nous coupling between two waveguides with identical
width and asynchronous coupling between waveguides
with different widths. In the lattice, resonators A, B, and
C are oriented in the same way such that coupling between
A and its neighbors B and C occurs synchronously between
waveguides of the same widthW1. By rotating resonator D
by 45° with respect to the other three resonators, we could
obtain different coupling strengths between microring D
and its neighbors due to asynchronous coupling between

FIG. 1. (a) Schematic of a Floquet TPI microring lattice and
(b) its topological phase map [23]. The lattice behaves as a
normal insulator except in regions marked by CIN or AFIN, which
denote CI or AFI behavior in band gap N ¼ fI; IIg. Markers X,
Y, Z correspond to the topological phases of the fabricated lattice
at three wavelengths in Fig. 5; L, M, N indicate additional
fabricated lattices discussed in the Supplemental Material [29].
(c) AFI edge states in the projected quasienergy band diagram of
a semi-infinite lattice with boundaries along the x direction and
coupling angles θa ¼ 0.473π, θb ¼ 0.026π. The Chern number
(C) of each energy band and winding number (W) of each bulk
band gap are also indicated.
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waveguides of different widths W1 and W2. We imple-
mented the octagon lattice on a SOI substrate with
Ls ¼ 16.06 μm, W1 ¼ 400 nm, W2 ¼ 600 nm, and iden-
tical coupling gap g ¼ 225 nm, yielding θa ¼ 0.473π
and θb ¼ 0.026π around 1620 nm wavelength (see
Supplemental Material [29] for details). An image of the
fabricated lattice consisting of 5 × 10 unit cells is shown in
Fig. 2(b), with close-up images of the synchronous and
asynchronous coupling sections in Fig. 2(c).
We characterized the transmission bands of the micror-

ing lattice by coupling TE-polarized light to the input
waveguide and measuring the transmitted power in the
output waveguide (see Supplemental Material [29] for
details of measurement setup). Figure 3(a) shows the
normalized power transmission spectrum measured over
the 1620–1626 nm wavelength range. Over one FSR of the
microring resonators (∼5 nm), we can identify three bulk
band gaps (I, II, and III) separating the passbands. The high
power transmission in all three bulk band gaps indicate that
edge modes are excited in these frequency ranges. We
conclude that these modes must correspond to the AFI edge

states which exist in all three band gaps of the microring
lattice, as predicted in the projected band diagram com-
puted for the same lattice in Fig. 1(c). On the other hand,
the transmission spectrum in the bulk passbands exhibits
multiple dips, which are caused by multiple interference
and localized resonances of light propagating through the
bulk of the lattice. For comparison, the simulated trans-
mission spectrum of the lattice computed using the field
coupling method in Ref. [30] is shown in Fig. 3(b). The
coupling angles were set at θa ¼ 0.473π and θb ¼ 0.026π
and a propagation loss of 3 dB=cm was assumed in each
resonator. The effects of �5% uniformly distributed ran-
dom variations in the coupling strengths and round-trip
phases in the lattice are also shown by the hatched area in
the plot. The characteristic high and flat transmission
spectrum in the bulk band gaps due to edge modes are
clearly visible, in good agreement with the measured
spectrum. The bulk passbands also exhibit transmission
dips similar to those observed in the measured spectrum.
The small wavelength mismatch between the simulated and
measured spectra can be attributed to a slight deviation in
the effective index of the fabricated waveguides from
numerical simulations, which could be caused by a sys-
tematic bias in the fabricated waveguide dimensions.
To obtain direct evidence of AFI edge modes in the bulk

band gaps, we excited the lattice by injecting light at
1623 nm wavelength, which lies in band gap II, into
the input waveguide and imaged the scattered light
pattern using a near-infrared (NIR) camera (details in
Supplemental Material [29]). Figure 4(a) shows the imaged
scattered light intensity distribution over the lattice when
light was injected into port 1 of the input waveguide. Clear
evidence of light propagating along the bottom edge of the
lattice can be seen, indicating that an AFI edge mode was
formed. The simulated light intensity distribution in the
microrings in Fig. 4(a) also shows good agreement with the
scattered light intensity map obtained from the camera.
When light was injected into port 2 of the input waveguide,
a counterpropagating edge mode was excited, which
propagated along the top edge of the lattice, as seen in
Fig. 4(b). The two chiral modes represent two orthogonal
pseudospin states of the lattice which are time-reversal (TR)
counterparts of each other since they have identical
quasienergy but propagate in opposite directions in each
microring. However, since the driving sequence of our
lattice does not satisfy the condition for TR invariance
[21,31], the two chiral edge modes are not TR symmetric,
as evidenced by the asymmetry in their dispersion behav-
iors about kx ¼ 0 and the difference in their field distri-
butions. We also observed similar AFI edge mode patterns
for excitation wavelengths in band gaps I and III. By
contrast, when we tuned the laser wavelength to 1624 nm,
which lies in a bulk passband, only bulk modes were
excited and no edge mode was observed. This can be seen
in the NIR image in Fig. 4(c), which shows that the input

Port 1
Port 2     

Port 3
Port 4

m
(b)(a)

Synchronous 
coupling 

A

DC

B

Asynchronous 
coupling

Synchronous m

A

(c)

D

Asynchronous
coupler coupler

FIG. 2. (a) Schematic of a unit cell of a Floquet lattice of
identical, evanescently coupled octagon resonators, with octagon
D rotated by 45° with respect to the other three resonators.
(b) Optical microscope image of a 5 × 10 fabricated lattice with
input and output waveguides coupled to the left and right
boundaries. (c) SEM images of octagonal resonators A and D
with zoomed-in images of the synchronous and asynchronous
coupling sections.
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FIG. 3. (a) Measured and (b) simulated transmission spectra of
the TPI microring lattice. The red line in (b) is the spectrum
obtained for an ideal lattice of identical microrings with coupling
angles θa ¼ 0.473π and θb ¼ 0.026π. The hatched area indicates
the range of transmission values obtained in the presence of�5%
random variations in the coupling strengths and microring round-
trip phases.

PHYSICAL REVIEW LETTERS 124, 253601 (2020)

253601-3



light spread out over the lattice instead of being localized
along the edge. The simulated light intensity distribution in
the lattice at the corresponding wavelength in Fig. 4(c) also
confirms this behavior.
Since the topological behaviors of the microring lattice

depend on the coupling angles θa and θb, we can observe
topological phase changes in the lattice by exploiting the
frequency dispersion of the evanescent couplers. As
the wavelength is tuned from 1510 nm to 1630 nm, the
simulated coupling angle increases from 0.283π to 0.495π
for the synchronous coupler and from 0.014π to 0.028π for
the asynchronous coupler (see Supplemental Material
[29]). The corresponding topological phase of the lattice
follows the yellow trajectory in Fig. 1(b), which crosses a
phase boundary. Figures 5(a)–5(c) show the projected
band diagrams of a semi-infinite lattice at the three
sample points X, Y, and Z marked on the phase map.
These points correspond to wavelengths λX ¼ 1532.5 nm,
λY¼1546.5nm, and λZ ¼ 1593.5 nm, with coupling
angles ðθa;θbÞ¼ð0.315π;0.016πÞ, ð0.355π; 0.018πÞ, and
ð0.430π; 0.023πÞ, respectively. Around wavelength λX, the
lattice behaves as a CI in band gaps I and III and a normal
insulator in band gap II. At λY , band gap II closes but the
lattice still retains its topological insulator behavior in band
gaps I and III. Near λZ, the lattice supports AFI edge modes
in all three band gaps.
The measured transmission spectra of the lattice around

these three wavelengths are shown in Figs. 5(d)–5(f), from
which close correspondence to the projected band diagrams
can be observed. In particular, high transmission is
observed in wavelength ranges corresponding to topologi-
cally nontrivial bulk band gaps where CI or AFI edge
modes are expected. Within one FSR of the microring
resonators, transmission spectra X and Y show only two
bulk band gaps (I and III) with edge modes while spectrum
Z has three distinct bulk band gaps with edge modes, as
predicted by the projected band diagrams. For spectrum X,
the transmission in the center bulk band gap (band gap II) is
low since the lattice behaves as a normal insulator and thus
no edge mode exists. This behavior is confirmed by the

scattered light distribution imaged at λ ¼ 1532.80 nm in
Fig. 5(g), showing input light being reflected from the
lattice. However, at λ ¼ 1534.67 nm, which lies in band
gap III of spectrum X, the lattice behaves as a CI, as
evidenced by the edge mode imaged at λ ¼ 1534.67 nm in
Fig. 5(h). As the wavelength is tuned from λX to λY , the
center band gap closes [Fig. 5(e)], although transmission in
the output waveguide remains low since light can propagate
throughout the lattice and is partially reflected back into the
input waveguide. This can be seen in the NIR image at
λ ¼ 1546.50 nm in Fig. 5(i). As the wavelength is further
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FIG. 4. (a),(b) NIR camera images showing chiral AFI edge modes along the bottom edge and top edge, respectively, of the octagon
lattice when light in a bulk band gap (λ ¼ 1623 nm) was injected into port 1 or port 2 of the input waveguide. The lower left plot in each
figure shows the map of scattered light intensity constructed from raw camera data; the lower right plot is the simulated light intensity
distribution in the lattice. (c) When input light was tuned to a wavelength in a transmission band (λ ¼ 1624 nm), only bulk modes were
excited and no edge mode is observed.
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FIG. 5. Topological phase changes in the octagon lattice due to
frequency dispersion in the coupling angles: (a)–(c) Projected
band diagrams of a semi-infinite lattice with boundaries along x
around (a) λX ¼ 1532.5 nm, (b) λY ¼ 1546.5 nm, (c) λZ ¼
1593.5 nm. (d)–(f) Measured transmission spectra of the lattice
over one FSR centered around λX , λY , and λZ. (g)–(j) Scattered
light intensity distributions obtained from NIR camera showing
different topological behaviors at various input wavelengths:
(g) normal insulator located in topologically trivial bulk band
gap II, (h) CI edge mode in bulk band gap III, (i) bulk modes in
closed band gap II, (j) AFI edge mode in reopened bulk
band gap II.
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increased to λZ [Fig. 5(f)], the center band gap opens
again but with an important difference in that the trans-
mission in the band gap is now high due to the formation
of an AFI edge mode, as verified by the NIR image at
λ ¼ 1593.50 nm in Fig. 5(j).
We also fabricated octagon lattices with different cou-

pling gap, coupling length, and waveguide widths to verify
the topological behaviors of the lattice in the different
regions of the phase map in Fig. 1(b). These samples are
marked L, M, and N on the map. NIR images also showed
edge modes formed in topologically nontrivial band gaps of
these lattices as predicted by the phase map. These results,
which are included in the Supplemental Material [29], also
provide additional evidence that our Floquet microring
lattice behaves as predicted.
In conclusion, we experimentally demonstrated a

Floquet TPI based on a 2D lattice of strongly coupled
octagonal resonators. The system emulates a periodically
varying Hamiltonian through the periodic evolution of
light around each octagon. By exploiting asynchronism
in the evanescent coupling between waveguides of different
widths, we could realize strong and asymmetric direct
couplings between adjacent resonators, which allows us to
observe chiral AFI edge modes. Our lattice also exhibits
rich topological behaviors, including a normal insulator,
CI, and AFI, by tuning the coupling angles. Our work thus
introduces a versatile nanophotonic platform for investigat-
ing Floquet TPIs and exploring their applications.

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.
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