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According to the familiar Breit-Wigner formula, tunneling through a potential barrier is strongly
enhanced when the energy of the projectile is equal to the resonance energy. Here we show how a weak
continuous wave laser can qualitatively change the character of resonance tunneling, and enforce a sudden
and total suppression of the transmission by inducing an exceptional point (EP, special non-Hermitian
degeneracy). Our findings are relevant not only for laser control of transmission in the resonance tunneling
diodes, but also in the context of electron scattering through any type of metastable (e.g., autoionization,
Auger, intermolecular Coulombic decay) atomic or molecular states, and even in the case of transmission of
light or sound waves in active systems with gain and loss.
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The phenomenon of resonance tunneling was first
encountered by Breit and Wigner in their theory of slow
neutron capture [1]. The ubiquitous Breit-Wigner formula
states that tunneling through a potential barrier is strongly
enhanced when the energy of the projectile is equal to the
resonance energy. The simplest and most important exam-
ple of resonant tunneling is a single particle transmission
through a double barrier potential (see, e.g., Ref. [2]).
Dramatic enhancement of conductivity by resonance tun-
neling has been exploited in a large variety of contexts in
physics and engineering, e.g., for producing a new class of
functional materials designed for specific device applica-
tions (see Refs. [3–6]). For resonance tunneling in quantum
wells and quantum wires, diodes, and in molecular elec-
tronics see, for example, Refs. [7–13].
Here we show that coherent destruction of resonance

tunneling can be obtained by applying an external field
with a certain specific fine-tuned intensity and frequency.
Coherent destruction of tunneling by an external field was
already discussed in the context of the double well potential
and its generalizations [14–16]. However, the just men-
tioned works dealt with bound states, while in our present
Letter we consider resonance tunneling in a double barrier
potential, i.e., a process which involves solely the con-
tinuum. Moreover, in Refs. [14–16] the destruction of
tunneling arises due to localized eigenstates, while our
present work focuses on controlling the single particle
transmission through a double barrier potential using light
induced exceptional points (EPs).

The EPs, special non-Hermitian degeneracies
(convertible to a Jordan block degeneracy by similarity
transformation [17]), are intensively studied theoretically
and experimentally in various fields of physics, e.g., in
optics and laser physics [18–28], in acoustic systems
[29,30], and in electronic systems [31,32]. For a review
on the physics of EPs, see Ref. [33].
Experiments showing a dramatic effect of the EPs on

physical properties require typically very accurate mea-
surements of an exponentially decaying signal [34]. In
our present Letter, we predict theoretically a new
dynamical effect of the EP that does not require mea-
surements of very weak signals. In fact, the strength of
the relevant signal is as high as in standard measurements
of resonance tunneling, performed, e.g., in diodes. More
specifically, we will show here that, by applying a weak
intensity laser field (either forming an EP or bringing the
system close to an EP), the transmission peak in the
resonance tunneling probability is suppressed and a dip
rather than a peak is obtained. Our finding applies
generally to any situation involving resonance tunneling
in atoms, molecules, quantum dots, quantum wells, and
diodes.
The EPs of quantum mechanics are well defined only

within the non-Hermitian formulation of the theory [35].
Correspondingly, our subsequent treatment of the tunneling
problem will be based upon the non-Hermitian (complex
scaled) Lippmann-Schwinger equation (LSE) [36], which
takes the form
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Tf←iðEÞ¼hϕfðEÞjϕiðEÞi−2iπhϕfðEÞjV̂jϕiðEÞi

−2iπ
X
α

ðϕθ
fðEÞjV̂θjψθ

αÞrθðψθ
αjV̂θjϕθ

i ðEÞÞrθ
E−Eθ

α
: ð1Þ

Here, Tf←iðEÞ stands for the transmission coefficient
associated with the transition from an appropriate initial
quantum state, ϕiðEÞ, to a given final state, ϕfðEÞ, of the
same energy E. Symbol V̂ represents the associated
interaction potential invoking the transitions. The last term
of Eq. (1) is constructed by means of the complex
coordinate method [35]. Meaning that the relevant scatter-
ing coordinate(s) are rotated into the complex plane by an
angle θ, i.e., r ↦ rθ ¼ reiθ. The initial and the final states
ϕθ
i;fðEÞ are identified here with the energy normalized

continuum eigenfunctions of the asymptotic (interaction
free) Hamiltonian Ĥθ

0 ¼ Ĥθ − V̂θ. On the other hand,
ψθ
α stands for a normalized eigenfunction of the full

Hamiltonian Ĥθ corresponding to an eigenvalue Eθ
α.

Because Ĥθ is a non-Hermitian operator, the c product
ð� � � j � � �Þ is used rather than the standard scalar product
h� � � j � � �i, see Chaps. 8 and 9 of Ref. [35] for details.
Further explanation of Eq. (1) and its derivation is given in
the Supplemental Material [37].
The transmission probability for a particle of an impact

energy E to pass through the interaction region of nonzero
V̂ is given as Pf←iðEÞ ¼ jTf←iðEÞj2. Figure 1 presents an
illustrative example, in which Pf←iðEÞ describes tunneling
through an one-dimensional (1D) symmetric double well
potential. The calculation is based upon Eq. (1). As we
recall, the spatial coordinate x has been rotated here into the
complex plane by angle θ.

For the impact energies E located in the vicinity of a
single isolated narrow resonance (RES), the LSE of Eq. (1)
can be dramatically simplified [36,38]. Namely, one may
pick up only a single term α ¼ RES from the second line of
Eq. (1), and write just

Tf←iðEÞ
−2πi

≐
(ϕθ

fðEÞjVθjψθ
RES)(ψ

θ
RESjVθjϕθ

i ðEÞ)
E − ERES þ iΓRES=2

; ð2Þ

valid for E ≈ ERES. Note that ψθ
RES is associated here with

the complex eigenvalue ERES ¼ ERES − iΓRES=2, with ERES

being the real valued resonance energy and ΓRES the
pertinent resonance width. An approximative formula (2)
is tested in the inset of Fig. 1 against the numerically exact
results coming from Eq. (1). One can see that both formulas
(1) and (2) provide practically identical results for
E ≈ ERES. Moreover, jTf←iðE ¼ ERESÞj2 ≐ 1. It has been
shown [38] that an additional approximation converts
Tf←iðEÞ ¼ ð2Þ into an even simpler appearance

Tf←iðEÞ
−2πi

¼ γRESi γRESf

E − ERES þ iΓRES=2
: ð3Þ

Here γRESi;f are constants equal to the square roots of the
associated partial widths times extra phase factors (see
Sec. VIII and Exercise 8.1 in Ref. [35]). When the
two partial widths are identical [as in the case of any
symmetric potential VðxÞ], one has γRESi ¼ γRESf . Therefore,
γRESi γRESf ¼ eiϕΓRES=2, and Eq. (3) reduces to the familiar
Breit-Wigner profile mentioned at the beginning of this
article. In particular one finds that jTf←iðE ¼ ERESÞj2 ¼ 1.
Before proceeding further, let us briefly mention three

physically realistic situations which are, to a good approxi-
mation, described by a 1D double barrier potential. The
first situation corresponds to scattering of electrons on an
atom. Here the Feshbach autoionizing resonances (such as
an 4d → 5p excitation of Inþ [39]) can be mapped into
shape type resonances of a 1D potential (like, e.g., the
Gaussian potential of Ref. [40]). The second situation is
associated with an experimental setup of a two-dimensional
quantum dot [9,41]. An adiabatic elimination of one spatial
coordinate results here again in a 1D double barrier
effective potential. The third situation concerns resonance
tunneling in semiconductor quantum heterostructures
(Esaki’s Nobel Prize of 1973 [42,43]).
Let us move now towards discussing the main subject of

this Letter, namely, to the resonance tunneling for a
potential supporting an EP. Slightly more generally, we
shall assume that our potential supports two resonances
(RES1 and RES2) that are almost degenerate such that the
system is close to an EP. In the just mentioned (near) EP
situation, the single term approximation (2) of Eq. (1) is not
applicable. Instead, one needs to use an analogous two term
formula

10 20 30 40 50 60 70 80
E (eV)

0

0.2

0.4

0.6

0.8

1

f
 i

T
(E

)
2

16.88 16.9 16.92
E (eV)

0

0.5

1

full
2

res

T

T 2

FIG. 1. The probability of transmission through an 1D double
barrier potential, which takes the form VðxÞ ¼ ð0.5x2 −
0.8Þe−0.1x2 in atomic units. The calculation is based upon evalu-
ating the right-hand side of Eq. (1) in a numerically exact manner.
The spatial coordinate x has been rotated here into the complex
plane by angle θ ¼ 0.2. For comparison, the yellow line displays
results obtained by using Eq. (2), which assumes that a single
isolated resonance controls the tunneling. One can see that Eqs. (1)
and (2) are in agreement in the vicinity of the resonance peak.
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Tf←iðEÞ
−2πi

≐
X
n¼1;2

(ϕθ
fðEÞjVθjψθ

RESn
)(ψθ

RESn
jVθjϕθ

i ðEÞ)
E − ERESn þ iΓRESn=2

; ð4Þ

valid again for E ≈ ERES1;2.
It was shown in Refs. [44,45] that, for specific toy

models fine-tuned as to match the EP condition (defined by
degeneracy of eigenvectors), an EP induces a dip (zero) in
the profile of jTf←iðEÞj2 for E ¼ EEP. Let us emphasize in
this context that, unlike Refs. [44,45], our study describes
the most general setting which includes also a dynamical
effect of the EP on jTf←iðEÞj2. The term dynamical
highlights here the fact that proximity of our system to
the EP can be controlled during a single transmission
experiment through varying the intensity and frequency of
the used laser light. Bringing our system towards an EP
does not require changing the parameters of the static
potential, as opposed to Refs. [44,45]. Furthermore, the
latter possibility of using lasers is highly relevant from an
experimental point of view.
In fact, an EP induced occurrence of a dip can be

anticipated from Eq. (4). Namely, close to an EP degen-
eracy one has ERES1 − iΓRES1=2 ≐ ERES2 − iΓRES2=2 ≐
EEP − iΓEP=2 and jψθ

RES1
Þðψθ

RES1
j ≐ −jψθ

RES2
Þðψθ

RES2
j, with

the latter property coming from the c-orthonormality
condition ðψθ

RESn
jψθ

RESn0
Þ ¼ δnn0 (see the Supplemental

Material [37]and Sec. IX.E in Ref. [35] for details). The
right-hand side of Eq. (4) then approximately vanishes for
E ≐ EEP. Therefore, instead of a peak of the resonance
transmission probability one expects a dip (i.e., total
reflection).
Interestingly, the use of Siegert state formalism [46–48]

(where only the resonance and antiresonance poles of the
scattering matrix are taken into consideration) enables us to
get a simple closed form expression for jTf←iðE ≈ EEPÞj2.
One has

Pf←iðE ¼ EEP þ ΔEÞ

≃
���� ΓEP=2
ΔE − iΓEP=2

þ ΓEP=2
ΔEþ iΓEP=2

����
2

: ð5Þ

Showing that Pf←iðE ¼ EEP þ ΔEÞ consists basically of
two mutually complex conjugated Breit-Wigner con-
tributions which are coherently added together. The trans-
mission profile (5) possesses a zero at E ¼ EEP embedded
between two maxima that are shifted by ΔE ¼ �ΓEP=2.
This analytical result is confirmed by our numerical
calculation (see Fig. 2 plotted and discussed below).
Having analyzed the impact of an EP on resonance

transmission in a rather general setting, let us move on now
towards a slightly more specific case of EPs induced and
controlled by laser light. Consider again a particle of an

effective massmmoving in 1D along coordinate x under an
influence of a symmetric short ranged potential VðxÞ.
Assume that this particle also interacts with a weak linearly
polarized laser pulse of a given frequency ω and an
adiabatic envelope ϵ0ðtÞ. The corresponding complex
scaled Hamiltonian is for our present purposes most
conveniently written in the acceleration gauge [49], and
possesses the form

ĤθðtÞ ¼ −
ℏ2

2m
e−2iθ∂xx þ V(xeiθ þ α0ðtÞ cosωt); ð6Þ

where α0ðtÞ ¼ ϵ0ðtÞ=ðmω2Þ. Note that the particle becomes
asymptotically free for x → �∞, this introduces naturally
the concept of scattering by a time dependent target
V(xeiθ þ α0ðtÞ cosωt). Such a scattering theory is rather
straightforward to formulate when using continuous wave
(cw) lasers, for which the envelope ϵ0ðtÞ is a constant, and
ĤθðtÞ is time periodic with the period T ¼ 2π=ω of one
optical cycle. Under such circumstances one may take
advantage of Floquet theory [50], and move straightfor-
wardly into studying an equivalent time independent
coupled channel scattering problem. Moreover, in a single
photon approximation (which is justified for weak enough
laser intensities), one may deal with only two coupled
scattering Floquet channels. The resulting effective two
channel Floquet Hamiltonian takes then the following
appearance:
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FIG. 2. The probability of transmission associated with scatter-
ing at the 1D double barrier potential of Fig. 1 dressed by a fine-
tuned cw laser. The fine-tuned laser parameters generating an
EP are equal to ωEP ¼ 0.918 930 602 139 6 a:u: and ϵEP0 ¼
8.625 863 370 106 809 × 10−5 a:u: Note the dip that is sur-
rounded by two maxima which are separated by ΓEP, in agree-
ment with Eq. (5). One has ΓEP ¼ 0.001 585 516 26 eV. Note
also that predictions of the LSE (1) (solid black line) agree with
(4) (dashed red line) and (5) (dashed blue line) to all significant
digits in the energy window plotted here. The results presented in
the inset were obtained for laser frequency that equals to
ω ¼ ωEP, whereas the laser field strength ϵ0 differs from ϵEP0
as indicated in the figure. Note that the dip survives even for
ϵ0 ≠ ϵEP0 and its energy location remains unaffected.
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Ĥθ

¼
�− ℏ2

2me
−2iθ∂xxþVðxeiθÞ α0V 0ðxeiθÞ

2

α0V 0ðxeiθÞ
2

− ℏ2
2me

−2iθ∂xxþVðxeiθÞþℏω

�
:

ð7Þ

Here V 0ðxÞ ¼ ∂xVðxÞ. Scattering theory defined by this
Hamiltonian can be formulated and resolved by taking
advantage of the LSE (1) and by following all the
subsequent considerations leading ultimately to Eq. (5).
A self contained derivation of the Hamiltonian Ĥθ ¼ ð7Þ is
given in the Supplemental Material [37], together with a
detailed description of the pertinent initial or final states
ϕθ
i;fðEÞ, etc. In passing, we note that the concept of an EP

directly induced by time periodic modulation has recently
been reported in classical optics, both theoretically [51] and
experimentally [52].
We proceed further with taking the same 1D test problem

as in Fig. 1 and exposing it to a weak cw laser light as
explained in the previous paragraph. The laser parameters
ðω; ϵ0Þ are deliberately fine-tuned in such a way as to
induce an EP, via arranging for coalescence between the
field free bound state (dressed by one photon) and the
lowest field free shape resonance of VðxÞ. Subsequently,
the corresponding two channel transmission probabilities
are calculated, both in a numerically exact fashion
based upon the LSE (1), using the associated two term
approximation (4), and using the simple dip formula (5).
All the underlying technical details are relegated to the
Supplemental Material [37].
Physical significance of the obtained results is neatly

documented by Fig. 2, which depicts the overall trans-
mission profile for the impact energies E in the vicinity of
EEP [recall that the meaning of EEP is clarified in Eq. (5)].
Most importantly, the Lorentzian peak observed for reso-
nant scattering in the absence of laser (inset of Fig. 1) is
split by the used weak laser (which generates the EP) into
two peaks separated by an energy gap equal to ΓEP. One
also observes the dip (zero) of transmission, located
between the just mentioned two peaks and anticipated in
our theoretical discussion above. In passing, we note that a
similar split-peak profile has been recently reported in
optics [27].
It has been shown in Ref. [53] that when a particle

interacts with an oscillating laser field, a field free bound
state is transformed into a resonance, which in the context
of scattering and tunneling plays the same mediating role
as, e.g., the barrier resonances in an absence of laser.
Namely, the transmission can get arbitrarily close to unity.
The light induced EP presented above is created by the
coalescence of the same type of resonance state as studied
in Ref. [53] with a barrier resonance of our symmetric 1D
potential.

One may ask at this point how does the profile plotted in
Fig. 2 change when the laser parameters ðω; ϵ0Þ are detuned
from the EP condition. An answer is provided by Fig. 3 and
by the inset of Fig. 2. One may see that the dip feature of
jTf←iðEÞj2 survives both when detuning the frequency
(Fig. 3) and the laser field strength (inset of Fig. 2) from the
EP. Additionally, Fig. 3 is clearly reminiscent of the typical
Fano profile. This observation supports the suggestion of
Heiss and Wunner [45] that all such Fano line shapes imply
the proximity of an EP. Importantly, Fig. 3 demonstrates
that an imprint of the EP can be seen even when the laser
intensity is quite far from its EP value. In passing we note
that the separation ΔE of the transmission peaks of Fig. 2
and the laser field strength ϵ0 are found to obey the
relationship ΔE ¼ ðϵ0=ϵEP0 ÞΓEP.
In summary, the qualitative difference between the

behavior of transmission in Fig. 1 and Figs. 2 and 3
represents the main message of the present Letter. We may
conclude that the laser induced EP enables us to control
totally the character of scattering through a double barrier
potential. Importantly, the EP induced effects are visible in
the transmission profile even when the laser parameters
ðω; ϵ0Þ are not exactly fine-tuned to ðωEP; ϵEP0 Þ. Note that,
up to now, the only EP effects that have been discussed in
the literature so far for the case of ðω; ϵ0Þ ≠ ðωEP; ϵEP0 Þ
include the so-called asymmetric switch [22,23], the sur-
vival probability [54,55], and scattering in optical micro-
spirals [56]. Moreover, the dynamical effect presented here
does not require any modification in the fabrication of the
systems, e.g., the diodes, and can be observed in any
processes which involve tunneling, by applying laser with
the corresponding frequency and intensity.
Our findings open the door to a plethora of new ideas,

such as control of resonance tunneling in quantum cascade
[57] by a light induced EP. Similar approaches may apply
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FIG. 3. The probability of transmission associated with scatter-
ing at the 1D double barrier potential of Fig. 1 dressed by a cw
laser detuned from the EP condition. The detuned laser frequency
equals to ω ¼ ωEP þ 0.01 eV, the laser field strength ϵ0 ¼ ϵEP0 .
Note the presence of the dip (shown separately in the inset). Note
also that the predictions of the LSE (1) agree with Eq. (4) to all
significant digits in the energy window plotted here.
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for atomic, molecular, and mesoscopic systems, or for the
case of active systems with gain and loss. Furthermore, the
labile nature of resonance tunneling leads to a new regime
where electrical switches can be controlled through electro-
magnetic radiation.
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