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Structure in the Universe is widely believed to have originated from quantum fluctuations during an
early epoch of accelerated expansion. Yet, the patterns we observe today do not distinguish between
quantum or classical primordial fluctuations; current cosmological data are consistent with either
possibility. We argue here that a detection of primordial non-Gaussianity can resolve the present situation,
and provide a litmus test for the quantum origin of cosmic structure. Unlike in quantum mechanics, vacuum
fluctuations cannot arise in classical theories and therefore long-range classical correlations must result
from (real) particles in the initial state. Similarly to flat-space scattering processes, we show how basic
principles require these particles to manifest themselves as poles in the n-point functions, in the so-called
folded configurations. Following this observation, and assuming fluctuations are (i) correlated over large
scales and (ii) generated by local evolution during an inflationary phase, we demonstrate that the absence of
a pole in the folded limit of non-Gaussian correlators uniquely identifies the quantum vacuum as the initial
state. In the same spirit as Bell’s inequalities, we discuss how this can be circumvented if locality is
abandoned.
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Introduction.—Cosmological observations strongly sug-
gest that structure in the Universe originated from minute
fluctuations present in thevery earlyUniverse, prior to the hot
big bang [1–3]. A compelling possibility is that these density
perturbations were produced through quantum mechanical
zero-point fluctuations in the vacuum [4–8], and then were
stretched over long distances by rapid accelerated expansion
(inflation). In one brush, this idea unveils a beautiful con-
nection between the largest structures in the cosmos and the
fundamental laws of physics at the smallest scales. Yet,
current data [9,10] could equally be explained if inflation had
stretched classical statistical fluctuations instead. In the same
fashion as Bell’s program back in the 1960s put quantum
mechanics to the test [11], our goal here is to bring the
quantum origin of the density fluctuations, realized in a
majority of models, into a well-defined statement that can be
confronted with future observations.
Unfortunately, one cannot simply perform experiments

with the entire Universe. We only get to observe the one
we inhabit, and only have access to an effectively classical
probability distribution of fluctuations [12]. Classic tests of
quantummechanics, such asBell’s inequalities [11], cannot be
directly applied in this case. As a result, despite a long history

(see, e.g., Refs. [12–22]), until now there has been limited
progress identifying observational connections between the
quantum initial state and the classical universe we observe
today. In this Letter we provide a testable prediction for the
quantum nature of the primordial fluctuations.
A step toward a potential signature was suggested by

Maldacena [23]. For a judiciously chosen model, the
dynamics during inflation effectively performs a Bell-type
measurement, storing the result in the final probability
distribution. The proposal does not suggest a generic
observational test; yet, although baroque, Maldacena’s
model is a proof of principle that the primordial fluctuations
can remember their quantum origin. As we show here, the
nonlinear local evolution of the density fluctuations can
indeed store its quantum origin in the correlations observed
at late times. Concretely, we will show how only quantum
mechanics can produce the type of long-range correlations
typical of the vacuum state, while classical fluctuations are
necessarily produced by (highly excited) states with their
own characteristic features. The basic picture, illustrated in
Fig. 1, is the following: Non-Gaussian correlations in the
quantum vacuum are associated with “particle creation”. In
contrast, due to locality, causal classical evolution must also
include the decay of particles in the initial state. Hence, even
though both vacuum and classical effects produce correla-
tions on large scales at late times, the latter necessarily
encode its distinctive physical origin, yielding distinguish-
able signatures from the case of quantum-vacuum fluctua-
tions. In particular—in analogy with flat-space polology
[24]—an associated pole must be present for classical
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n-point functions (beyond the power spectrum).Moreover, a
width will also be generated, through dissipation [25–30],
which effectively smooths these poles to produce a bump at
physical momenta, as in particle colliders.
The existence of poles by itself may not be sufficient to

show that classical physics is the culprit. For instance,
quantum excited states can also develop the same pole
structure [31]. Yet, we will demonstrate that the absence of
this signature—in otherwise observable long-range non-
Gaussian correlations—can only be explained by quantum
zero-point effects. In other words, in a classical framework
consistent with locality, tampering with the analytic struc-
ture of the correlators in an attempt to remove the poles will
unavoidably alter the structure at large scales, as expected
from our intuition in flat space. On the other hand, long-
range correlations—as those featured in the vacuum state—
may be produced without the associated poles if locality is
violated. We will illustrate the role of local causal evolution
in an illuminating example.
Our analysis is also motivated by the practical issue of

simulating a universe with non-Gaussian initial conditions.
Typically, generating initial conditions with nonlocal cor-
relations from a Gaussian map requires high-dimensional
integration [32–34]. If these initial conditions were gen-
erated by local classical evolution instead, one could simply
produce them via a Gaussian map evolved in time, and
potentially speed up the simulations. However, as we show
here, such a procedure—or any local evolution for that
matter—will not accurately reproduce the non-Gaussian
probability distribution obtained from quantum fluctua-
tions. This result may also have some deeper relevance in
quantum versus classical computing.
Cosmic quantumness: Gaussian fluctuations.—For con-

creteness, we will assume initial adiabatic density fluctua-
tions ζðxÞ arise from an effectively massless field during
inflation. The background metric (ignoring slow-roll cor-
rections) takes de Sitter’s form: ds2 ¼ ð−HτÞ−2ð−dτ2þ
dx2Þ, where physical (t) and conformal (τ) times are related

by dt ¼ aðτÞdτ ¼ ð−HτÞ−1dτ, with H the Hubble expan-
sion parameter. We will define _f ≡ ∂tf ¼ a−1∂τf through-
out. The modes of the density perturbations obey

ζðx; τÞ ¼
Z

d3k
ð2πÞ3 e

ik·x½a†kζk þ a−kζ�k�; ð1Þ

where ζk ¼ Δζk−3=2ð1 − ikτÞeikτ, with the normalization
Δζ chosen to coincide with the observed amplitude of
adiabatic fluctuations. Since the field is real, we have
ða†kÞ† ¼ a−k. The statistical differences arise once we
compare quantum versus classical correlation functions.
Quantum.—The a†k are creation operators in a Hilbert

space, satisfying

½a†k; ak0 � ¼ δðk − k0Þ; akj0i ¼ 0; ð2Þ

which readily imply

h0jak0a†kj0i ¼ δðk − k0Þ; h0ja†kak0 j0i ¼ 0; ð3Þ

in the vacuum state. In what follows, we will define
h0j½� � ��j0i → h½…�iq for convenience.
Classical.—The a†k are stochastic parameters, which

obey the following statistical properties:

ha†kak0 ic ¼
1

2
δðk − k0Þ ¼ hak0a†kic; ð4Þ

as an ensemble average. Notice that the second equality is
only valid for classical fluctuations, since it implies that the
stochastic parameters must commute.
By construction, both classical and quantum-vacuum fluc-

tuations give rise to the same equal-time correlation functions
in the absence of interactions. Therefore, measurements of the
power spectrum alone are not sufficient to distinguish between
them. On the other hand, for unequal times the quantum and

FIG. 1. Late-time observations measure correlations of the adiabatic density fluctuation ζðxÞ produced from nonlinear time evolution
in the early Universe. The particle’s propagation is illustrated by the solid lines, while the dashed line represents the absence of the
corresponding mode at late times. Left: Quantum-vacuum fluctuations arise as the correlated production of three particles due to
nonlinear effects. This process would violate energy conservation in flat space, and thus produces no poles at physical momenta [31].
Right: Classical fluctuations only arise in a state containing physical particles, as local variations in the particle density; see, e.g.,
Refs. [25–30]. The nonlinear evolution that leads to net particle creation also allows for decays (or annihilation). These processes appear
as poles at physical momenta.
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classical two-point functions do not agree, reflecting the
nonzero commutator, ½ζðx; τÞ; _ζðx; τÞ� ≠ 0, in the quantum
theory. This distinction plays a key role when interactions are
present.
Non-Gaussianity.—In order to gain intuition, we will

consider an illustrative example with the interaction
Hamiltonian Hint ¼ −ðλ=3!Þ_ζ3. This choice will allow us
to perform explicit computations without losing generality.
Our conclusions will be rooted in well-established princi-
ples, and therefore do not depend on the type of interaction
as long as it respects locality.
Quantum.—The standard (in-in) calculation [35] in the

vacuum state yields [36] (jkij ¼ ki)

hζk1
ζk2

ζk3
i0q ¼

4λH2Δ6
ζ

ðk1 þ k2 þ k3Þ3k1k2k3
; ð5Þ

up to the momentum-conserving δ function, which is
denoted by the primed brackets hi0. Notice, for ki ≠ 0,
we only have a pole in the total energy: kt ≡ k1 þ k2 þ k3.
This is due to the fact that, for cosmological (in-in)
correlators, the would-be energy-conserving δ function
becomes a factor of 1=knt , for non-negative integer n.
Via analytic continuation, as kt → 0, the residue of this
pole is intimately connected to the flat-space S matrix, with
the order of the pole (n ¼ 3 in this case) related to the
number of derivatives at the local interaction [37–42]. In
the quantum vacuum, the correlation is produced by the
creation of three (virtual) particles (0 → 3), which are
subsequently measured at later times (see Fig. 1). The
uncertainty principle in an expanding universe permits a—
minimal amount of—violation of energy conservation,
Δt ∼H−1, which is forbidden classically [31]. As expected,
since there are no real particles to scatter in the vacuum,
there are no other processes allowed nor poles at physical
momenta.
Classical.—We determine the bispectrum by solving the

classical equations of motion perturbatively. Using the
Green’s function, obeying

∂τ0Gðτ; τ0Þ ¼ 2Δ2
ζ

�
τ0

k
sin½kðτ − τ0Þ� − ττ0 cos½kðτ − τ0Þ�

�
;

ð6Þ

we find at first order in λ,

ζð2Þk ðτÞ ¼ λ

Z
dτ0d3p
ð2πÞ3 ð−Hτ0Þ−1

× ½∂τ0Gkðτ; τ0Þ�∂τ0ζ
ð1Þ
p ðτ0Þ∂τ0ζ

ð1Þ
k−pðτ0Þ; ð7Þ

where ζð1Þ is the Gaussian field. Using ζk ≈ ζð1Þk þ ζð2Þk , the
leading contribution to the bispectrum at τ ¼ 0 becomes

hζk1
ζk2

ζk3
i0c ¼

2λH2Δ6
ζ

3k1k2k3

�
3

k3t
þ 1

ðk1 þ k2 − k3Þ3

þ 1

ðk1 − k2 þ k3Þ3
þ 1

ðk2 − k1 þ k3Þ3
�
: ð8Þ

As much anticipated, there are poles at physical momenta,
in addition to the one at kt ¼ 0. These poles are due to
classical fluctuations of physical (real) particles in the
initial state, which (nonlinearly) interact to produce long-
range non-Gaussian correlations. For instance, physical
particles can decay (annihilate) via on-shell 1 → 2 (2 → 1)
processes, and therefore are associated with the poles in the
so-called folded limit [43], where k1 → k2 þ k3 and per-
mutations thereof (see Fig. 1).
Signatures of quantum origin.—The above example

illustrates a general property of (in-in) inflationary corre-
lation functions: poles at physical momenta arise from the
scattering of real particles present in the initial state. For
quantum-vacuum fluctuations there are no real particles,
only virtual, yet the poles are still present (by analytic
continuation) at negative energies. This is more than just an
isolated result mimicking our flat-space intuition. In fact,
notice that the overall coefficients of the poles, either in the
quantum Eq. (5) or classical correlation Eq. (9) are related,
and ultimately linked to the scattering amplitude in the flat-
space limit [37–42]. Hence, following basic principles,
causality guarantees that any process that creates (real)
particles at local events is necessarily accompanied by
physical poles in the correlation functions [44]. The
specific form of the interaction controls the resulting
polynomial in momentum and/or time dependence, and
hence only affects the residue of the poles. Let us
emphasize that this is an unavoidable conclusion, which
does not depend on the form of the (local) interaction. As a
consequence, since there are no vacuum fluctuations in
classical mechanics, quantum mechanics is the only way
we can guarantee a non-Gaussian signal without violations
of causality or locality, while avoiding the existence of
poles at physical momenta.
As usual [24], decay processes will introduce a finite

width which softens the behavior in the folded limit.
However, unlike the drift toward the complex plane found
in flat space, for (in-in) correlators in an expanding universe
the poles move away from the “mass shell” but remain real.
While the existence of a width usually happens at higher
orders in perturbation theory, models with strong dissipa-
tion will exhibit this softening already at tree level.
Classical nonlocalities.—A crucial aspect of Bell’s

inequalities is that they may be circumvented by nonlocal
theories with hidden variables at the classical level
[11,45,46]. Similarly, locality plays a key role in inferring
the quantum nature of the cosmological signal. For our
purposes here, it will be sufficient to find an example
of a theory which reproduces the same correlators as the
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quantum vacuum, but violates locality. At the same time,
we will show that enforcing local causal evolution, while
attempting to remove the poles, also alters the type of long-
range correlations expected in the vacuum state.
Hidden variables.—For illustrative purposes, we con-

sider a complex scalar field, which may be decomposed as

ϕkðτÞ ¼
Δϕ

k3=2
½a†kð1 − ikτÞeikτ þ b−kð1þ ikτÞe−ikτ�; ð9Þ

obeying classical Gaussian statistics,

ha†kak0 ic¼hak0a†kic¼δðk−k0Þ; hbkb†k0 ic¼0: ð10Þ

Let us assume now the existence of a Lagrangian such that
the following modified Green’s function,

∂τ0Gkðτ → 0; τ0Þ → Geff
k ðτ → 0; τ0Þ ¼ 1

k
e−ikτ

0
; ð11Þ

applies in the τ → 0 limit. Notice that it includes only
positive frequency modes. We will not specify the nature of
the interaction leading to the above properties, and there-
fore we treat it as a hidden-variable theory. Using Eq. (7)
with ζ → ϕ and λ → λϕ, we find

ϕkðτ → 0Þ ¼ i
3
λϕ

Z
d3p
ð2πÞ3

Z
dτ0

1

k
e−ikτ

0 _ϕ�
pðτ0Þ _ϕ�

k−pðτ0Þ:

ð12Þ

From this expression we can calculate the bispectrum as
usual, yielding

hϕk1
ϕk2

ϕk3
i0 ¼ 2λϕH−1Δ6

ϕ

ðk1 þ k2 þ k3Þ3k1k2k3
: ð13Þ

Since ϕ is real at late times, it can be converted into density
fluctuations after inflation, e.g., ϕðτ → 0Þ ≈ ζ. Up to an
overall constant, the result reproduces the same statistical
map for the quantum vacuum in Eq. (5) (up to higher order
effects which are not relevant here). This theory, however,
is nonlocal as it can be seen directly from Eq. (11). In
particular, locality demands that the Green’s function in
coordinate space must vanish outside of the light cone. Yet,
we have Geff

k ðτ0 → 0Þ ≃ k−1, resembling the Coulomb
potential, which is nonzero everywhere in space. As a
consequence, this theory propagates information instanta-
neously everywhere in space-time. This is not surprising as
causality in a relativistic theory demands the presence of a
negative frequency mode (“antiparticle”) [47], which is
precisely what gives rise to the poles at physical momenta.
Conclusions and outlook.—The origin of structure as a

result of vacuum fluctuations is a purely quantum mechani-
cal phenomena, for classical effects can only arise when
states contain (many) physical particles. Moreover, due to

causality, nonlinear interactions that allow for the creation
of particles must be accompanied by processes in which
particles are also able to decay. While the creation of
(virtual) particles is allowed, decays are forbidden in
vacuum, which gives rise to a dramatic difference in the
types of non-Gaussian correlations arising in classical
versus quantum-vacuum fluctuations.
The distinction between the two results, as well as the role

of locality, is also manifest in the manipulations involved in
the derivation of the three-point function. In general, one can
show that the difference between the quantum-vacuum and
classical computation may be written as

hζðx1; τÞζðx2; τÞζðx3; τÞiq − hζðx1; τÞζðx2; τÞζðx3; τÞic
¼ iλ

24

X
σ

Z
τ

−∞
d3x0dτ0a4ðτ0Þ½ζðx1; τÞ; D̂σð1Þζðx0; τ0Þ�

× ½ζðx2; τÞ; D̂σð2Þζðx0; τ0Þ�½ζðx3; τÞ; D̂σð3Þζðx0; τ0Þ�;
ð14Þ

where D̂l¼1;2;3 are local differential operators that character-
ize the type of interaction(s) and σ is a permutation. The
above expression neatly illustrates the link between late time
measurements in a quantum state and Bell-type correlations
at an earlier time, which are encoded in the (nonvanishing)
commutators. Moreover, because of causality, the commu-
tators vanish at spacelike separation. Therefore, the above
difference is built up from interactions in the overlap
between the past light cones of the points x1, x2, and x3.
This implies that the information encoded in the correlators
cannot be modified by local operations at late times. For
quantum-vacuum fluctuations, the absence of a pole in the
folded limit of the bispectrum thus becomes a unique
signature of local causal evolution.
Limits of various n-point functions have been known to

encode important physical information; see, e.g.,
Refs. [28,31,39,48–52]. An enhanced “soft limit” (with
soft internal or external momenta) is due to additional
(light) fields, while the folded limit is enhanced for excited
states. Yet, as we have demonstrated here, the absence of an
enhancement in folded configurations cannot occur with
classical fluctuations, which would provide—barring vio-
lations of locality—striking evidence for the quantum
origin of structure in the Universe. Although current
observations are consistent with a Gaussian spectrum,
surveys of increasing volume and sensitivity will continue
the search for non-Gaussianity [53]. A true pole in the
folded limit of the n-point functions would have diverging
signal-to-noise ratio [43]. While the nonzero width of
physical particles will make the signal-to-noise ratio finite,
it is detectable nonetheless. However, enhanced dissipation
may increase the width, thus reducing the signal-to-noise
ratio in the folded limit. At the same time, dissipation also
increases the amplitude of the overall non-Gaussianty
[28,30,54], which is presently constrained by data [10].
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Hence, as a matter of principle, it is possible (but poten-
tially challenging) to distinguish between the spectrum of
classical and quantum fluctuations. Moreover, as we have
emphasized, the analytic structure of their respective shapes
is clearly distinct, which suggests an analysis in position
space might provide a more stringent test, perhaps along the
line discussed in Ref. [55].
Finally, although we restricted ourselves to the case of

density fluctuations, our results are also relevant for
primordial gravitational waves [54,56,57]. A signal could
be the consequence of either quantum or classical fluctua-
tions. However, the latter is correlated with measurable
effects also in the density perturbations [54,58]. As we have
shown, the shape of the associated non-Gaussianity will
ultimately reveal its cosmic origin.
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