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We introduce an extension of the standard inflationary paradigm on which the big bang singularity is
replaced by an anisotropic bounce. Unlike in the big bang model, cosmological perturbations find an
adiabatic regime in the past. We show that this scenario accounts for the observed quadrupolar modulation
in the temperature anisotropies of the cosmic microwave background, and we make predictions for the
polarization angular correlation functions E-E, B-B, and E-B, together with temperature-polarization
correlations T-B and T-E, that can be used to test our ideas. We base our calculations on the bounce
predicted by loop quantum cosmology, but our techniques and conclusions apply to other bouncing models
as well.
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Introduction.—Anisotropies are generic features of
homogeneous solutions to Einstein’s equations. This is
manifest already for Bianchi I geometries, the simplest
anisotropic spacetimes. There, in the absence of anisotropic
sources, the contribution of shears to Friedmann equations
dilutes with the expansion faster than that of matter and
radiation. Therefore, unless anisotropies are exactly zero
during the entire history of the cosmos, there must be a time
in the past when they were dominant. From this viewpoint,
the Friedmann-Lemaître-Robertson-Walker (FLRW) iso-
tropic spacetimes are quite singular. In the standard
model of cosmology, one appeals to a phase of slow-roll
inflation, when the exponential expansion quickly dilutes
anisotropies and argues that from that time on one can just
ignore them. However, the way this argument is applied
contains a stronger assumption—that the quantum states
describing cosmological perturbations were also isotropic.
Anisotropies in quantum fields do not dilute at the same
rate as the shears of the homogeneous metric do. In fact, the
only reason why they can be washed away is because the
cosmic expansion redshifts the wavelengths for which
the perturbation fields are anisotropic, potentially shifting
them out of the observable Universe. There is no additional
dilution [1]. However, redshift scales linearly with the
expansion, while the dilution of the shear σ2 scales with its
sixth power (in absence of anisotropic sources). Hence,
unless inflation is significantly longer than the minimum
amount required, one cannot rule out that some anisotropic
features were imprinted in the cosmic microwave back-
ground (CMB).
This argument and the fact that the Planck satellite has

observed anisotropies in the CMB [2] has triggered our
interest in studying anisotropic extensions of the standard
cosmological model. However, within general relativity

one finds a major impediment: In a generic anisotropic
universe, there are no preferred initial states for the
cosmological perturbations. In the theory of inflation,
one uses the fact that the wavelengths of the perturbations
that we can probe in the CMB were much shorter than the
Hubble radius at the onset of slow roll. Then, the notion of
adiabatic vacuum can be used to single out an initial
quantum state, at least for these wavelengths. However, this
argument fails if the preinflationary spacetime is aniso-
tropic (see, e.g., [3]). In the absence of preferred initial data,
the theory loses predictive power.
This Letter proposes an extension of the standard

model, where the big bang singularity is replaced by
an “anisotropic cosmic bounce”. We consider a frame-
work in which the Universe contracts in the remote past,
according to Einstein’s theory, until matter and spacetime
curvature approach the Planck scale. Then, quantum
gravity effects grow and dominate the dynamics, over-
whelming the classical attraction and making the
Universe bounce. In the far past, the Universe isotropizes
and perturbations find an adiabatic regime. Therefore, in
this scenario, one has preferred initial and final notions of
vacua and Hilbert spaces for perturbations. Our goal is to
formulate this quantum theory and to solve the evolution,
that in the Schrödinger picture reduces to compute the S
matrix between in and out states. We show that pertur-
bations can retain memory of the anisotropic phase of
the Universe and leave an imprint on the CMB, even
though anisotropies in the background metric are large
only during a short period of time around the bounce.
In order to isolate the effects of anisotropies, we work
with Bianchi I spacetimes; they differ from spatially flat
FLRW spacetimes only by the presence of anisotropic
shears.
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The classical phase space.—Loop quantum cosmology
(LQC) uses canonical methods for quantization [4,5].
Therefore, to incorporate perturbations, we first need to
formulate them in the Hamiltonian language. This task is
significantly more tedious and complex than the FLRW
counterpart [6], and to the best of our knowledge it has not
been developed before (although classical gauge invariant
perturbations in Bianchi I have been studied in [3] by
expanding Einstein’s equations). We follow the geometric
approach proposed in [7]. Gauge invariant fields at linear
order in perturbations can be obtained by finding a
canonical transformation that makes four of the new
momenta proportional to each of the four linear constraints
of the theory, respectively—the scalar and vector con-
straints. This guarantees that the conjugate variables to
these momenta are pure gauge, while the rest of fields are
gauge invariant. The search for such transformation reduces
to solving Hamilton-Jacobi-like equations for a generating
function. There are multiple solutions, which correspond to
different choices of gauge invariant fields. We have selected
the choice that in the isotropic limit reduces to the familiar
scalar perturbations and the two circularly polarized tensor
modes (with helicity �2) and denote them by Γ0 and Γ�2,
respectively.
The dynamics of gauge invariant perturbations is guar-

anteed to decouple from pure gauge fields and is generated
by a Hamiltonian Hpert. Hamilton’s equations can be
combined into the second-order differential equations

Γ̈s þ 3H _Γs þ
k2

a2
Γs þ

1

a2
X2
s0¼0

Uss0Γs0 ¼ 0; ð1Þ

with s ¼ 0;�2; we have expanded the fields in Fourier
modes Γsðk⃗; tÞ, and k is the comoving wave number. The
functions Uss0 ðk⃗; tÞ are effective potentials made of a
complicated combination of the background variables
(see [8] for details), aðtÞ is the mean scale factor, and
H ¼ _a=a its Hubble rate. We have implemented this
Hamiltonian theory in the symbolic language of
Mathematica and made the code publicly available in
[9]. One important difference with FLRW spacetimes is
that the potentials Us;s0 are not diagonal in presence of
anisotropies. Therefore, the three fields Γs are coupled and,
because these couplings are time dependent, there is noway
to diagonalize the equations of motion at all times by means
of a local field redefinition.
Quantum theory.—The classical phase space we are

interested in is the product VBI × Vpert of Bianchi I
geometries and gauge invariant perturbations. At leading
order in the perturbations, dynamics is implemented by first
determining the evolution within VBI, and then lifting the
dynamical curves to Vpert with the Hamiltonian Hpert. We
follow the same strategy in the quantum theory. Namely,
the Hilbert space is the product HBI ⊗ Hpert. HBI has been

described in [10,11]. A good approximation for quantum
states ΨBI ∈ HBI that at late times are sharply peaked on a
classical geometry is provided by the so-called effective
equations [12]. These are quantum corrected equations for
the directional scale factors and their conjugate variables,
whose solutions follow with precision the peak of the wave
function ΨBI. The physics of these spacetimes has been
studied in detail in [13], and the main features are the
following. All solutions contain a bounce of the mean scale
factor aðtÞ, which is caused by quantum gravity effects. All
strong curvature singularities are resolved, as long as the
matter sector satisfies the null energy conditions. Energy
densities and shears are bounded from above. Directional
scale factors aiðtÞ bounce generically at different times,
giving rise to a richer bounce than in the isotropic case.
After the bounce, and in the presence of a scalar field and
an inflationary potential VðϕÞ, Hubble friction slows ϕ
down and generically leads to a phase of slow roll; such a
phase is an attractor in the phase space of this quantum
corrected theory [13]. In this sense, the bounce provides
a mechanism to set up the initial conditions for inflation
to occur. Once inflation starts, the scenario provided by
the standard cosmological model goes through, with the
important difference that the state of perturbations is
different from the standard ansatz of the Bunch-Davies
vacuum.
We assume the matter content to be a scalar field with

a potential VðϕÞ. In the scenarios of interest (see below)
the potential is subdominant in the preinflationary phase,
and consequently, the generation of anisotropies is inde-
pendent of VðϕÞ. For the sake of simplicity, we use VðϕÞ ¼
1=2m2ϕ2 and comment below on the effect of other
choices. The other freedoms in our predictions come from
the choice of an effective Bianchi I quantum spacetime.
One such geometry is singled out by specifying the value of
the shear squared σ2ðtBÞ, the shear in one of the principal
directions, say σxðtBÞ, the value of the scalar field ϕðtBÞ,
and the sign of its time derivative, all at the time tB of the
bounce. σ2ðtBÞmeasures the total amount of anisotropies at
tB; σxðtBÞ indicates the way these anisotropies are distrib-
uted in the three principal directions, and ϕðtBÞ and the sign
of _ϕðtBÞ control the numberN of e-folds of expansion from
the bounce to the end of inflation [σ2ðtBÞ also affects this
number, but in a subleading manner] [13].
To quantize the perturbations, we follow the conceptual

framework introduced in [14–16] and extend it to Bianchi I
geometries. We obtain that the dynamics of quantum
perturbations Γ̂0, Γ̂�2 are described by the Eq. (1), with
the background geometry given by a solution to the
effective equations of LQC. The main difficulty arises
from the interactions among the quantum fields Γ̂0, Γ̂�2,
induced by the anisotropies. To describe dynamics, we first
define the in and out Hilbert spaces. The former is defined
from an adiabatic vacuum in the past (see Sec. IV in [8]
and [17] for details), that we take to be anytime before
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10000 Planck times prior to the bounce. At this time,
anisotropies are already negligible in the geometries that
we have explored, and all Fourier modes of interest are
well inside the Hubble radius. The out Fock space is the
standard one built from the Bunch-Davies vacuum during
inflation, when the anisotropies of the spacetime are
negligible again. The quantum evolution is implemented
by the S matrix, which provides a unitary map between
the in and out Fock spaces [18]. Its action on the in
vacuum produces

Ŝjini ¼ N̄⊗
k⃗
exp

� X
s;s0¼0;�2

Vss0 ðk⃗Þâout†s ðk⃗Þâout†s0 ð−k⃗Þ
�
jouti;

ð2Þ

where N̄ is a normalization factor, and Vss0 ðk⃗Þ ≔P
s00

1
2
β�s00sðα−1Þ�s0s00 , with αss0 ðk⃗Þ and βss0 ðk⃗Þ the

Bogoliubov coefficients that relate the in and out vacua.
They encode the information of the evolution of pertur-
bations across the anisotropic bounce and can be com-
puted from the classical equations of motion. The
operators âout†s , with s ¼ 0;�2, create quanta of the
familiar scalar and tensor modes in inflation, respectively.
The right-hand side of (2) is the product of squeezing
operators acting on jouti. Consequently, the in vacuum
evolves to a state made of entangled pairs of quanta, one
with wave number k⃗ and the other with ð−k⃗Þ; i.e., no net
momentum is created. In the isotropic limit Vss0 becomes
diagonal, and the operator in (2) becomes the product of
operators for scalar and each of the two tensor modes.
This is not the case in presence of anisotropies, where the
final state contains entanglement among the three types of
perturbations. One can compute, e.g., the entanglement
entropy, from the Bogoliubov coefficients [8].
Constraints from observations.—We next analyze

Planck’s observations of a quadrupolar direction-dependent
modulation in the CMB [2]. Since our goal is to describe
the largest possible signal that we can expect in the CMB,
we choose σ2ðtBÞ close to its upper bound and derive the
constraints from observations on the other parameters that
specify the spacetime geometry. Observations translate to a
lower bound for the number of e-folds N, which keeps
anisotropies in the CMB below the observed threshold. On
the other hand, if this number happens to be very large, all
anisotropies in perturbations would be redshifted out of
the observable Universe. A representative example of our
analysis is obtained by choosing σ2ðtBÞ ¼ 5.78 in natural
units (this is half of its upper bound [13]) and σxðtBÞ ¼ 0.
We have computed the quadrupolar modulation and com-
pared it with data from Planck (see Fig. 1). The result of this
analysis is a lower bound for N of 70.1. Interestingly, this
value is compatible with the results found in [19] for the
preferred value of N in anisotropic LQC. As we will shortly

see, N ¼ 70.1 is not large enough to wash away all
anisotropies in the CMB.
Predictions for the CMB.—We compute the angular

correlation functions CX;X0
ll0;mm0 ≡ haXlmaX

0
l0m0 i, with

aXlm ¼
Z

dΩXðn̂ÞY�
lmðn̂Þ; ð3Þ

where X ¼ T, E, B represents the temperature, electric, and
magnetic components of the polarization, respectively, of
the anisotropies in the CMB.
(i) Temperature-temperature (T-T): Our theory is invari-

ant under translations and parity, but not under rotations.
Parity invariance restricts CT;T

ll0;mm0 to vanish unless lþ l0

is even (isotropy would have also imposed l ¼ l0,
m ¼ −m0). We plot in Fig. 2 CTT

l ≡ ½1=ð2lþ 1Þ�×P
l
m¼−lð−1ÞmCTT

ll;m−m and compare it with the predic-
tions of isotropic inflation. As expected, the effects
of the preinflationary physics are larger for low multi-
poles (large angular scales) and translate to a modest
enhancement of power, although small when compared
to uncertainties coming from cosmic variance. Therefore,
anisotropies do not alter significantly the best-fit value of
the six free parameters of the standard (lambda cold dark
matter) model. We have checked this by running a Markov

FIG. 1. Amplitude of the quadrupolar modulation g2ðkÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
M jg2Mj2=5

p
of the primordial scalar power spectrum Pðk⃗Þ,

where g2MðkÞ ¼ ½1=P̄ðkÞ� R dΩk⃗Pðk⃗ÞY�
2Mðk̂Þ, with P̄ðkÞ≡R

dΩk⃗Pðk⃗Þ. Planck’s results [2] for the amplitude of a quadrupole
that falls off with k as gPl2 ðkÞ ¼ gPl2 × ðk=k⋆Þq, for q ¼ −1, is
shown in blue. The gray line shows our results for a set of
individual values of k. The outcome oscillates with high frequency
around the mean value, shown in black. These oscillations do not
show up in angular correlation functions, since they get effectively
averaged out when integrating in k. k⋆ is a referencewave number,
whose physical value today is 0.05 Mpc−1. This plot is obtained
for σ2ðtBÞ ¼ 5.78 and σx ¼ 0 in natural units, and N ¼ 70.1.
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chain Monte Carlo analysis [20], using TT, EE, and TE
data [21]. In contrast, correlation functions for l ≠ l0 are a
smoking gun for anisotropies [22]. In Fig. 2 we also show
one of them, namely, CTT

llþ2;00, as an illustrative example.
Other values of l;l0; m;m0 produce similar results. Our
result for CTT

llþ2;00 is in agreement with the quadrupolar
modulation observed by Planck.
(ii) E − E, B − B, and T − E correlations: The con-

clusions are similar to the T − T case. Namely, these
correlations are different from zero only for lþ l0 even,
and the main departures from the isotropic model appear
for low multipoles and for l ≠ l0. As an example, we plot
in Fig. 3 CBB

l ≡ ½1=ð2lþ 1Þ�Pl
m¼−lð−1ÞmCBB

ll;m−m and
CBB
llþ2;00. The latter has an important contribution from the

entanglement between tensor perturbations with different
polarizations.
(iii) T-B and E-B: Because the B-polarization field is

a pseudoscalar, while T and E are parity even, these
correlations vanish in a parity invariant theory unless
lþ l0 is odd. Since isotropy would also imply l ¼ l0,
all these correlations vanish in the standard cosmological
model. Figure 4 shows CT;B

llþ1;00 and C
E;B
llþ1;00 in our model.

They originate exclusively from the entanglement between
scalar and the two tensor modes.
In the standard theory of inflation, the amplitude of tensor

perturbations depends on the choice of VðϕÞ. This freedom
remains in our model. We have chosen the parameters in
VðϕÞ that best fits existing data, but a different choice of
VðϕÞwould change the amplitude of Bmodes. Our invariant
prediction for them is, therefore, the magnitude of anisot-
ropies relative to their overall amplitude.

The computational difficulty of these calculations
comes from the need to resolve the angular dependence
of the primordial power spectra Ps;s0 ðk⃗Þ or, equivalently,
to decompose Ps;s0 ðk⃗Þ in spherical harmonics with spin
weight s-s0. This is a demanding task—the calculation of
these plots takes about a week on a 96-core high perfor-
mance computer (we use the numerical library [23]).
Our analysis shows that the quadrupolar modulation of

the T-T spectrum observed by Planck [2] could be a
remnant from an anisotropic preinflationary phase, rather
than a statistical fluke. Furthermore, we predict that this
modulation comes together with concrete effects in the
E-E, T-E, B-B, T-B, and E-B correlation functions, which

FIG. 2. (Left axis) Temperature-temperature angular correlation
function CTT

l (dotted blue line). For comparison, the shaded region
shows the values obtained from isotropic inflation, including the
uncertainties originated from cosmic variance. (Right axis)
CTT
llþ2;00 (red line with squares) (the isotropic counterpart is

exactly zero).

FIG. 3. (Left axis) B − B polarization angular correlation
function CBB

l (dotted blue line) and the predictions from isotropic
inflation with cosmic variance (shaded region), for comparison.
(Right axis) Off-diagonal component of the B − B polarization
correlation function CBB

llþ2;00 (red line with squares).

FIG. 4. T-B (left axis, dotted blue line) and E-B (right axis, red
line with squares) correlation functions for l0 ¼ lþ 1, and
m ¼ 0 ¼ m0. The isotropic counterpart is identically zero.
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provide a way to test our ideas (further details omitted here
can be found in [17]).
Discussion.—The merits of this Letter are as follows:

(i) To introduce a Hamiltonian formulation of gauge
invariant perturbations in Bianchi I spacetimes and to
implement the mathematical framework in a publicly
available computational algorithm [9]. (ii) To formulate
an exact quantization of the coupled system of linear
perturbations and to use this formalism to compute the
entanglement between scalar and tensor perturbations that
anisotropies generate. (iii) To embed this theory within a
quantization of the Bianchi I geometry, extending in this
way previous studies on quantum cosmology to anisotropic
scenarios, a task that has remained elusive due to the
complexity of the system. (iv) To show that perturbations
can retain memory of the preinflationary universe, although
the anisotropies in the background geometry quickly dilute
during inflation. This memory is codified in the form of
anisotropic correlation functions and quantum entangle-
ment between the different types of perturbations.
(v) Finally, and most importantly, we have explained a
possible origin for the nonzero quadrupolar modulation
observed by Planck and made concrete predictions for E-E,
B-B, T-E, T-B, and E-B correlations in the CMB. Although
Planck’s observations of the T-T quadrupole alone are not
significant enough to declare the detection of anisotropic
physics, a detailed search for the effects we describe in the
E-E and T-E correlations (that Planck has already partially
done), and particularly in B polarization, could boost the
significance of the detection. Some of the values we
predict, particularly the ones involving T-B and E-B
correlations, are small and probably difficult to observe,
but others are not and could be measured by the next
generation of CMB polarization observatories, such as
CORE [24].
Furthermore, although we have worked within loop

quantum cosmology, we expect our conclusions to be valid
for other theories that predict a similar bounce (see, e.g.,
[25–27]).
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