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The detection of binary black hole coalescences by LIGO and Virgo has aroused the interest in
primordial black holes (PBHs), because they could be both the progenitors of these black holes and a
compelling candidate of dark matter (DM). PBHs are formed soon after the enhanced scalar perturbations
reenter horizon during the radiation dominated era, which would inevitably induce gravitational waves as
well. Searching for such scalar induced gravitational waves (SIGWs) provides an elegant way to probe
PBHs. We perform the first direct search for the signals of SIGWs accompanying the formation of PBHs in
the North American Nanohertz Observatory for Gravitational waves (NANOGrav) 11-year dataset. No
statistically significant detection has been made, and hence we place a stringent upper limit on the
abundance of PBHs at 95% confidence level. In particular, less than one part in a million of the total DM
mass could come from PBHs in the mass range of ½2 × 10−3; 7 × 10−1� M⊙.
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Introduction.—Over the past few years, the great
achievement of detecting gravitational waves (GWs) from
binary black holes (BBHs) [1–7] and a binary neutron star
(BNS) [8] by LIGO and Virgo has led us to the era of GW
astronomy, as well as the era of multimessenger astronomy.
Various models have been proposed to account for the
formation and evolution of these LIGO and Virgo BBHs,
among which the primordial black hole (PBH) scenario
[9–11] has attracted a lot of attention recently. PBHs are
predicted to undergo gravitational collapse from over-
densed regions in the infant Universe [12,13] when the
corresponding wavelength of enhanced scalar curvature
perturbations reenter the horizon [14–18].
The PBH scenario is appealing because it can not only

account for the event rate of LIGO and Virgo BBHs, but
also be a promising candidate for the long elusive missing
part of our Universe—dark matter (DM). It is inconclusive
that whether PBHs can represent all DM or not, yet the
abundance of PBHs (fPBH) which describes the total DM
mass in the form of PBHs, has been constrained by a variety
of observations, such as extragalactic γ rays from PBH
evaporation [19], femtolensing of γ-ray bursts [20], Subaru
HSC microlensing [21], Kepler milli- and microlensing
[22], OGLE microlensing [23], EROS and MACHOmicro-
lensing [24], existence of white dwarfs (WDs) which are
not triggered to explode in our local galaxy [25] (this
constraint might be ineffective according to the simulation
in [26]), dynamical heating of ultrafaint dwarf galaxies

[27], x-ray and radio emission from the accretion of
interstellar gas onto PBHs [28], cosmic microwave back-
ground radiation from the accretion of primordial gas onto
PBHs [29–32], and GWs either through the null detection
of subsolar mass BBHs [33–36] or the null detection of
stochastic GW background (SGWB) from BBHs [35,37].
But PBHs in a substantial window in the approximate mass
range ½10−16; 10−14� ∪ ½10−13; 10−12� M⊙ are still allowed
to account for all of the DM. We refer to Ref. [35] for a
recent summary.
Actually there is another way to probe the PBH DM

scenario, namely through the scalar induced GWs (SIGWs)
which would inevitably be generated in conjunction with
the formation of PBHs [38–44]. The feature for distinguish-
ing SIGWs from other sources was sketched out in
Ref. [45] recently. Since PBHs are supposed to form from
the tail of the probability density function of the curvature
perturbations, the possibility to form a single PBH is quite
sensitive to the amplitude of curvature perturbation power
spectrum [40]. Consequently the abundance of PBHs is
extremely sensitive to the amplitude of the corresponding
SIGW. Therefore a detection of SIGWs will provide
evidence for PBHs, while the null detection of SIGWs
will put a stringent constraint on the abundance of PBHs.
The peak frequency of the SIGW ðf�Þ is determined by

the peak wave mode of the comoving curvature power
spectrum, and thus is related to the mass of PBHs by
f� ∼ 3 HzðmPBH=10−18 M⊙Þ−1=2 [39]. The mass of PBHs
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constituting DM should be heavier than 10−18 M⊙, other-
wise they would have evaporated due to Hawking radiation.
As a result, the corresponding peak frequency of the SIGW
should be lower than 3 Hz, and then it is difficult for
the ground-based detectors like LIGO and Virgo to detect
the corresponding SIGWs. On the other hand, the GW
observatories hunting for low frequency signals are
especially suitable to explore the PBH DM hypothesis,
and the prospective constraints on the abundance of
PBHs by LISA [46] and pulsar timing observations such
as IPTA [47], FAST [48], and SKA [49] have been
investigated in Ref. [42]. See some other related works
in Refs. [43,50–55].
Although the data of current pulsar timing array (PTA)

has been used to constrain the amplitude of SGWBs, those
results strongly depend on the assumption of some special
power-law form which is quite different from SIGWs [42].
Therefore, in this Letter, we perform the first search in
the public available PTA dataset for the signal of SIGWs
in order to test the PBH DM hypothesis. In particular,
the null detection of SIGWs in the current NANOGrav
11-year dataset [56] provides a constraint on the abundance
of PBHs through SIGWs in the mass range of
½4 × 10−4; 1.7� M⊙.
PBH, DM, and SIGW.—In this Letter, we consider the

monochromatic formation of PBHs, corresponding to a δ
power spectrum of the scalar curvature perturbation, i.e.,

PζðfÞ ¼ Af�δðf − f�Þ; ð1Þ

where A is the dimensionless amplitude of the power
spectrum. In this case, the mass of the PBHs is related to the
peak frequency f� by [12,13]

mPBH

M⊙
≃ 2.3 × 1018

�
H0

f�

�
2

; ð2Þ

where f� is in units of Hz, and H0 is the Hubble constant.
The formation of a PBH is a threshold process which is
described by three-dimensional statistics of Gaussian
random fields, also known as peak theory [57], and the
abundance of PBHs in DM, fPBH ≡ΩPBH=ΩDM, is given
by [58]

fPBH ≃ 1.9 × 107ðζ2c=A − 1Þe−ζ2c
2A

�
mPBH

M⊙

�
−1
2

; ð3Þ

where ζc ≃ 1 [59–64] is the threshold value for the
formation of PBHs.
In Ref. [65] the energy density of a GW background ρGW

takes the form

ρGW ¼
Z

ρGWðf; ηÞd ln f ¼ M2
p

16a2
h∂khij∂khiji; ð4Þ

where η is the conformal time, a is the scale factor, Mp is
the Planck mass, and the overline stands for time average. It
is useful to introduce the dimensionless GWenergy density
parameter per logarithm frequency ΩGWðη; kÞ defined by

ΩGWðη; fÞ≡ ρGWðf; ηÞ
ρcr

; ð5Þ

where ρcr is the critical energy of the present Universe. For
a monochromatic formation of PBHs, the present ΩGWðfÞ
of the SIGW in radiation dominated era can be estimated
as [42]

ΩGWðfÞ ¼ Ωð2Þ
GWðfÞ þ Ωð3Þ

GWðfÞ: ð6Þ

Here, the leading order contribution Ωð2Þ
GWðfÞ is given by

[66,67]

Ωð2Þ
GWðfÞ ¼

3f̃2A2

1024
Ωrð4 − f̃2Þ2ð3f̃2 − 2Þ2Θð2 − f̃Þ

×

�
π2ð3f̃2 − 2Þ2Θð2

ffiffiffi
3

p
− 3f̃Þ

þ
�
4þ ð3f̃2 − 2Þ log

����1 − 4

3f̃2

����
�

2
�
; ð7Þ

where f̃ ≡ f=f� is the dimensionless frequency and Θ is
the Heaviside theta function. In addition, the third-order

correction Ωð3Þ
GWðfÞ reads [42]

Ωð3Þ
GWðfÞ ¼

A3

384f̃2
ΩrðM2I23 þM1I2I4Þ: ð8Þ

The definitions of M1, M2, I2, I3, and I4 are complicated
and can be found in Ref. [42].
PTA data analysis.—Null detection of certain GW

backgrounds has been reported by the current PTAs
such as NANOGrav [68], PPTA [69], and EPTA [70],
and the upper bounds on the amplitude of those GW
backgrounds have also been continually improved. For
instance, NANOGrav has constrained on the SGWB
produced by supermassive black holes [71] and other types
of spectra [72] such as power-law, broken-power-law, free
and Gaussian-process-interpolated spectra. Similar studies
were also performed by the PPTA Collaboration [73] and
the EPTA Collaboration [74]. In this Letter we search for
the signal of SIGWs using the NANOGrav 11-year dataset
which consists of time of arrival (TOA) data and pulsar
timing models presented in Ref. [56]. Similar to Ref. [75],
we choose six pulsars which have relatively good TOA
precision and long observation time. A summary of the
basic properties of these pulsars is presented in Table I. For
all the six pulsars, Tobs is longer than 8 yr, NTOA is more
than 104, and rms (root-mean-square) is less than 1.5 μs.
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The presence of a GW background will manifest as the
unexplained residuals in the TOAs of pulsar signals after
subtracting a deterministic timing model that accounts for
the pulsar spin behavior and the geometric effects due to the
motion of the pulsar and the Earth [76,77]. It is therefore
feasible to separate GW-induced residuals, which have
distinctive correlations among different pulsars [78], from
other systematic effects, such as clock errors or delays due
to light propagation through interstellar medium, by regu-
larly monitoring TOAs of pulsars from an array of the most
rotational stable millisecond pulsars [79]. An NTOA length
vector δt representing the timing residuals for a single
pulsar can be modeled as follows [80,81]:

δt ¼ Mϵþ δtRGP; ð9Þ

where M is the timing model design matrix, ϵ is a vector
denoting small offsets for the timing model parameters, and
Mϵ is the residual due to inaccuracies of the timing model.
The timing model design matrix is obtained through the
LIBSTEMPO [82] package which is a PYTHON interface to
TEMPO2 [83] [84,85] timing software. The term δtRGP in
Eq. (9) is the stochastic contribution to the TOAs, which
can be modeled by a sum of random Gaussian processes
[86] as

δtRGP ¼ δtRN þ δtWN þ δtSSE þ δtSIGW: ð10Þ

The first term on the right-hand side of Eq. (10), δtRN,
represents the red noise via a Fourier decomposition,

δtRN¼
XNmode

j¼1

�
aj sin

�
2πjt
T

�
þbj cos

�
2πjt
T

��
¼Fa; ð11Þ

where Nmode is the number of frequency modes included in
the sum, T is the total observation time span, F is the
Fourier design matrix with components of alternating sine
and cosine functions for frequencies in the range
½1=T; Nmode=T�, and a is a vector giving the amplitude
of the Fourier basis functions. In the analysis, we choose

Nmode ¼ 50. The covariant matrix of the red noise co-
efficients a at frequency modes i and j will be diagonal,
namely,

haiaji ¼ PðfiÞδij; ð12Þ

where the power spectrum PðfÞ is usually well described
by a power-law model,

PðfÞ ¼ A2
RN

12π2

�
f

yr−1

�
3−γRN

f−3; ð13Þ

with ARN and γRN the amplitude and spectral index of the
power law, respectively. Note that in Eq. (12), fi is defined
by i=T if i is odd, and ði − 1Þ=T if i is even.
The second term, δtWN, accounts for the influence of

white noise on the timing residuals, including a scale
parameter on the TOA uncertainties (EFAC), an added
variance (EQUAD) and a per-epoch variance (ECORR) for
each backend and receiver system. This white noise is
assumed to follow Gaussian distribution and can be
characterized by a covariance matrix as

CWN ¼ CEFAC þ CEQUAD þ CECORR; ð14Þ

where CEFAC, CEQUAD, and CECORR are the correlation
functions for EFAC, EQUAD, and ECORR parameters,
respectively. Explicit expressions for these correlation
functions can be found in Ref. [75].
The third term, δtSSE, is a noise due to inaccuracies of a

solar system ephemeris (SSE) which is used to convert
observatory TOAs to an inertial frame centered at the solar
system barycenter. The SSE noise can seriously affect the
upper limits and Bayes factors when searching for stochas-
tic gravitational-wave backgrounds [72]. In our analysis,
we use DE436 [87] as the fiducial SSE model. To account
for the SSE errors, we employ the physical model
BAYESEPHEM introduced in Ref. [72] and implemented in
NANOGrav’s flagship package ENTERPRISE [88]. The
BAYESEPHEM model has eleven parameters, including four
parameters which correspond to perturbations in the masses
of the outer planets, one parameter describes a rotation rate
about the ecliptic pole, and six parameters characterize the
corrections to Earth’s orbit generated by perturbing
Jupiter’s average orbital elements [72].
The last term, δtSIGW, is the observed timing residuals

due to the SIGW, which are described by the cross-power
spectral density [89]

SIJðfÞ ¼
H2

0

16π4f5
ΓIJðfÞΩGWðfÞ; ð15Þ

where ΓIJ is the Hellings and Downs coefficients [78]
measuring the spatial correlation of the pulsars I and J in
the array. The expression for ΩGWðfÞ is given by Eq. (6).

TABLE I. Basic properties of the six pulsars used in our
analysis: rms—the weighted root-mean-square epoch-averaged
post-fit timing residuals, Nepoch—number of observational
epochs,NTOA—number of TOAs, Tobs—observational time span.
See Ref. [56] in detail.

Pulsar name rms [μs] Nepoch NTOA Tobs [yr]

J0613 − 0200 0.422 324 11 566 10.8
J1012þ 5307 1.07 493 16 782 11.4
J1600 − 3053 0.23 275 12 433 8.1
J1713þ 0747 0.108 789 27 571 10.9
J1744 − 1134 0.842 322 11 550 11.4
J1909 − 3744 0.148 451 17 373 11.2
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The free parameters for the SIGW are the amplitude A and
the peak frequency f�. For a fixed f�, the mass of a PBH is
given by Eq. (2). In this sense, the free parameter A is
directly related to the abundance of PBHs fPBH.
For the timing model parameters and TOAs, we use the

publicly available data files from the NANOGrav 11-year
dataset [56]. To extract information from the data,we perform
a Bayesian inference by closely following the procedure in
Ref. [72]. The parameters of our model and their prior
distributions are presented in Table II. In order to reduce
the computational costs, a common strategy is to fix thewhite
noise parameters to their max likelihood values determined
from independent single-pulsar analysis, in which only the
white and red noises are considered. Fixing white noise
parameters can greatly reduce the number of free parameters.
Assuming the δtRGP is Gaussian and stationary, for

a PTA with M pulsars, the likelihood function can be
evaluated as [90]

L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πΣÞp exp

�
−
1

2
RTΣ−1R

�
; ð16Þ

where R≡ ½δt1RGP; δt2RGP;…; δtMRGP�T is a collection of
δtRGP for all pulsars, and Σ≡ hRRTi is the covariance
matrix. Following the common practice in Refs. [86,91,92],
we marginalize over the timing model parameter ϵ when
evaluating the likelihood. The likelihood is calculated by
using the pulsar timing package ENTERPRISE. To achieve
parallel tempering, we use the PTMCMCSampler [93]
package to do the Markov chain Monte Carlo sampling.

Given the observational data D, one needs to distinguish
two exclusive models: a noise-only model H0 and a noise-
plus-signal modelH1. The model selection is quantified by
the Bayes factor

B10 ¼
evidence½H1�
evidence½H0�

¼ pðA ¼ 0jH1Þ
pðA ¼ 0jD;H1Þ

; ð17Þ

TABLE II. Parameters and their prior distributions used in the analyses.

Parameter Description Prior Comments

SIGW signal
A GWB strain amplitude Uniform ½10−5; 100� (upper limits)

Log-Uniform ½−5; 0� (model comparison) One parameter for PTA
f� Peak frequency Delta function Fixed

White noise
Ek EFAC per backend and receiver system Uniform [0, 10] Single-pulsar analysis only
Qk[s] EQUAD per backend and receiver system Log-Uniform ½−8.5;−5� Single-pulsar analysis only
Jk[s] ECORR per backend and receiver system Log-Uniform ½−8.5;−5� Single-pulsar analysis only

Red noise
ARN Red-noise power-law amplitude Uniform ½10−20; 10−11� (upper limits)

Log-Uniform ½−20;−11�
(model comparison)

One parameter per pulsar

γRN Red-noise power-law spectral index Uniform [0, 9] One parameter per pulsar

BAYESEPHEM

zdrift [rad/yr] Drift-rate of Earth’s orbit about
ecliptic z-axis

Uniform [−10−9; 10−9] One parameter for PTA

ΔMjupiter [M⊙] Perturbation to Jupiter’s mass N ð0; 1.55 × 10−11Þ One parameter for PTA
ΔMsaturn [M⊙] Perturbation to Saturn’s mass N ð0; 8.17 × 10−12Þ One parameter for PTA
ΔMuranus [M⊙] Perturbation to Uranus’ mass N ð0; 5.72 × 10−11Þ One parameter for PTA
ΔMneptune [M⊙] Perturbation to Neptune’s mass N ð0; 7.96 × 10−11Þ One parameter for PTA
PCAi Principal components of Jupiter’s orbit Uniform ½−0.05; 0.05� Six parameters for PTA

FIG. 1. Top panel: The 95% upper limits on the power spectrum
amplitude A of curvature perturbation as a function of the peak
frequency f� from the NANOGrav 11-year dataset. Bottom
panel: The corresponding Bayes factors B10 as a function of
the peak frequency f�.
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where the numerator and denominator are the prior and
posterior probability density of A ¼ 0 in the model H1,
respectively. We have used the Savage-Dickey formula [94]
to estimate the Bayes factor in Eq. (17).
Results and conclusion.—The upper limits and the Bayes

factor for the power spectrum amplitude A as a function of
the peak frequency f� from the NANOGrav 11-year dataset
are shown in Fig. 1 at the 95% confidence level. Even
though there are two peaks in the Bayes factor distribution,
both peak values are smaller than 3, implying the presence
of a signal in the data is “not worth more than a bare
mention” [95]. Since the Bayes factor B10 for each peak
frequency is less than 3, it indicates that the data is
consistent with containing noise only. The upper limits
on the abundance of PBHs in DM fPBH as a function of the
PBH mass mPBH are given in Fig. 2 at the 95% confidence
level. Note thatmPBH is related to f� by Eq. (2), and fPBH is
related to A and mPBH by Eq. (3). Our results imply that the
current PTA dataset has already been able to place a
stringent constraint on the abundance of PBHs through
the SIGWs. According to Fig. 2, the abundance of PBHs is
less than 10−6 in the mass range of ½2 × 10−3; 7 × 10−1�M⊙.
In this Letter, we give the first search for the signal of

SIGWs inevitably accompanying the formation of PBHs in
the NANOGrav 11-year dataset. Since no significant signal
is found, we place a 95% upper limit on the amplitude
of scalar perturbation over the peak frequency range of
½1.5 × 10−9; 3 × 10−6� Hz and the abundance of PBHs in
the mass range of ½4 × 10−4; 1.7� M⊙. In particular, the
abundance of PBHs in the mass range of ½2 × 10−3;
7 × 10−1� M⊙ is less than 10−6, which is much better than
any other observational constraints in this mass range in the
literature. Since the amplitude of SIGWs is roughly
determined by the peak amplitude of scalar power spectrum

even for the case with an extended mass distribution, a
similar constraint on the peak amplitude of scalar power
spectrum should be obtained from the NANOGrav 11-yr
data, and therefore a stringent constraint on the abundance
of PBHs with an extended mass distribution can be also
expected. In principle, the exact analysis for the case with
an extended mass distribution is model dependent, and will
be left for the future.
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