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We study the efficiency fluctuations of a stochastic heat engine made ofN interacting unicyclic machines
and undergoing a phase transition in the macroscopic limit. Depending on N and on the observation time,
the machine can explore its whole phase space or not. This affects the engine efficiency that either strongly
fluctuates on a large interval of equiprobable efficiencies (ergodic case) or fluctuates close to several most
likely values (nonergodic case). We also provide a proof that despite the phase transition, the decay rate of
the efficiency distribution at the reversible efficiency remains largest one although other efficiencies can
now decay equally fast.
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Introduction.—Small machines behave on average like
macroscopic ones: a mean input flux is converted into a
mean output flux with an efficiency bounded by the
reversible efficiency due to the second law of thermody-
namics [1]. However, their input and output fluxes fluctuate
with root mean squares which can be larger than their
averages. These fluctuations are constrained by the uni-
versal fluctuation relations that lead to the second law at the
ensemble averaged level [2–4]. This implies that the
efficiency η of the machine along a single realization of
duration t is also a stochastic quantity characterized by a
probability distribution PðηÞ. As recently discovered, its
fluctuations also display universal statistical features in
both classical [5–12] and quantum systems [13–16]. More
specifically, for long trajectories of autonomous machines,
the distribution PðηÞ concentrates at the macroscopic
efficiency η̄ while the reversible efficiency ηrev becomes
asymptotically the less likely. Also, the efficiency large
deviation function (LDF), defined as the long time limit of
t−1 lnPðηÞ, has a characteristic smooth form with two
extrema only and a well-defined limit for large efficiency
fluctuations. These predictions were experimentally veri-
fied in Refs. [17,18]. However, these results focus on the
efficiency statistics at long times and rely on the assump-
tions that the machine has a finite state space and thus
cannot undergo a phase transition.
The performance of machines undergoing a nonequili-

brium phase transition has attracted increasing attention
[19–25]. In this Letter, we consider a model ofN interacting
machines first proposed in Ref. [26]. At themean-field (MF)
level, i.e., when N → ∞, they may undergo a nonequili-
brium phase transition caused by an asymmetric pitchfork
bifurcation. Past the bifurcation point, ergodicity is broken
and these machines exhibit multiple macroscopic efficien-
cies [27]. In practice this means that their initial condition

will determine which stable steady state is eventually
reached and its corresponding macroscopic efficiency. As
a result fluctuations in performance only come from
uncertainties in the initial state. Our main goal here is to
characterize how efficiency fluctuations scale in size N and
in time t in such critical machines using LDFs. We do so by
developing a path integral method (in the spirit of [28–34]).
Crucially two regimes must be distinguished depending on
the order in which these scalings are taken, each yielding
to a different LDF. The first, JðηÞ, characterizes the non-
ergodic regime and corresponds to taking first N → ∞ and
then t → ∞ on ðNtÞ−1 lnPðηÞ. The second, J��ðηÞ, charac-
terizes the ergodic regime and corresponds to the opposite
order of limits. While this latter remains smooth, its two
extrema become degenerate, giving rise to strong efficiency
fluctuations spanning over different operating modes. The
former instead is not continuously differentiable anymore
and displays steep minima located around the mean field
efficiencies and multiple plateaux. Remarkably, despite
significant qualitative changes in both types of LDF, the
reversible efficiency, while not uniquely anymore, has the
fastest decaying efficiency probability. While our method is
presented for a specific model, it seems particularly well
suited to study collections of interacting machines and
characterizes critical nonequilibrium fluctuations.
Model.—We consider a machine made of a collection of

N interacting unicyclic machines. Each of these is autono-
mous and converts heat into mechanical work by hopping
between two discrete states of energy 0 or E ≥ 0 via two
different transition channels labeled by ν, where ν ¼ 1 is
caused by a cold reservoir at temperature Tð1Þ ¼ 1=βð1Þ and
ν ¼ 2 by a hot one at Tð2Þ ¼ 1=βð2Þ (we set kB ¼ 1). A
nonconservative force promotes (represses) the transition
from the lower to the higher energy state via channel ν ¼ 1
(ν ¼ 2), while the opposite is true for the transition from the

PHYSICAL REVIEW LETTERS 124, 250603 (2020)

0031-9007=20=124(25)=250603(6) 250603-1 © 2020 American Physical Society

https://orcid.org/0000-0002-2443-5901
https://orcid.org/0000-0001-8214-1322
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.250603&domain=pdf&date_stamp=2020-06-25
https://doi.org/10.1103/PhysRevLett.124.250603
https://doi.org/10.1103/PhysRevLett.124.250603
https://doi.org/10.1103/PhysRevLett.124.250603
https://doi.org/10.1103/PhysRevLett.124.250603


higher to the lower state. These unicyclic machines interacts
via a pair interaction energy V=N only when they are not in
the same states. The energy of the collective machine thus
reads Un ¼ nEþ nðN − nÞV=N, where n is the number
of machines in the high energy state. The probability to
find the collective machine in state n at time t follows a

Markov master equation _pn ¼
P

ε¼�1;0

P
ν k

ðνÞ
n;nþεpnþε,

where kðνÞnþϵ;n is the Poisson rate with which a unicyclic
machine hops to a high (low) energy state for ϵ ¼ 1 (ϵ ¼ −1)
via channel ν and kðνÞn;n ¼ −kðνÞnþ1;n − kðνÞn−1;n, see Fig. 1. To
specify further the dynamics, we choose (for ϵ ¼ �1)

kðνÞnþϵ;n ¼ N

�
1þ ϵ

2
− ϵ

n
N

�
e−

βðνÞ
2
ðEaþUnþϵ−Un−W

ðνÞ
nþϵ;nÞ; ð1Þ

whereEa is an activation energy andW
ðνÞ
nþϵ;n ≡ −ϵð−1ÞνF is

the work done by the nonconservative force and received by
the machine during the transition n → nþ ϵ via ν. Defining
intensive quantities as being per unicyclic machine and per
unit time, the intensive stochastic heat from the hot reservoir
and the intensive work from the nonconservative force are,
respectively,

q ¼
XN−1

n¼0

ϕq;nj
ð2Þ
n and w ¼

XN−1

n¼0

ϕw;nj
ð2Þ
n ; ð2Þ

where jð2Þn counts the intensive net number of jumps from n
to nþ 1 via channel 2 in a stochastic trajectory. Indeed,
whenX ¼ q (respectively,X ¼ w),ϕX;n gives the amount of
energy received from the hot reservoir (respectively, from
the nonconservative force) when the system undergoes a
cycle cn ≡ ðn!

ν¼2
nþ 1!

ν¼1
nÞ:

ϕq;n ≡Unþ1 −Un −Wð2Þ
nþ1;n ≃ Vð1 − 2n=NÞ þ F; ð3Þ

ϕw;n ≡Wð1Þ
n;nþ1 þWð2Þ

nþ1;n ¼ −2F: ð4Þ

The intensive stochastic entropy production σ ≡ σw þ σq

is the sum of the two partial entropy production σq ≡
½βð1Þ − βð2Þ�q and σw ≡ βð1Þw. The stochastic efficiency is
thus defined as η≡ −σw=σq. Their local (i.e., along each
cycle cn) analogs read σ

q
n ≡ ½βð1Þ − βð2Þ�ϕq;n, σwn ≡ βð1Þϕw;n,

ηln ≡ −
βð1Þϕw;n

ðβð1Þ − βð2ÞÞϕq;n
¼ −

σwn
σqn

: ð5Þ

In the macroscopic limit where N is very large and the
density of units in the high energy state x ¼ n=N can be
treated as a continuous variable, we denote them, respec-
tively, by σqx, σwx and ηlx.
Mean field dynamics.—When N → ∞ but t remains

finite, the master equation becomes a nonlinear MF master
equation for x [26]. Ergodicity breaking is evidenced by the
fact that its stationary solutions may take one, three (or even
five) values xMF depending on V and F, as shown on the
branching diagrams of Fig. 2. Each of these solutions will
give rise to a corresponding MF efficiency trough Eq. (5).
The MF master equation is exact for this model, i.e., the
extrema of the density LDF LðxÞ [27,35] (shown in the
insets) coincide with the MF densities. In panel (a) for
F ¼ 0.5, the abrupt change in the position of theminimumof
the density LDFs around V1

cr reveals a first order phase
transitionwhile in panel (b) forF ¼ 0 the smooth appearance
of two minima atV2

cr reveals a second order phase transition.
Currents and efficiency fluctuations.—The quantity of

interest is the cumulant generating function (CGF) for σq

and σw expressed in terms of their conjugated Laplace
parameter γ ¼ ðγq; γwÞ which reads

ΦðγÞ≡ lim
Nt→∞

1

Nt
ln heNtðγqσqþγwσwÞip0

; ð6Þ

FIG. 1. Graph of the discrete state space of the collective
machine. Blue edges are for channel 1 and red edges for
channel 2.

(a)

(b)

MF

FIG. 2. Stable (black) and unstable (light blue) mean field
steady state densities xMF versus interaction energy V. Insets:
density LDFs versus x for four values of V indicated by vertical
dashed lines. The parameters are Ea ¼ 2, E ¼ 0, βð1Þ ¼ 10, F ¼
0.5 for panel (a) and F ¼ 0 for panel (b). In all the Letter we take
βð2Þ ¼ 1 to set the energy scales, while the timescale is set by
Eq. (1).
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where h…ip0
is the mean on paths with initial condition

drawn from probability density p0. Using path integral
technique [34,36,37], this CGF can be written as the
maximum value taken by an action over trajectories ½x�∞0
of infinite duration

ΦðγÞ ¼ max
½x�∞

0

Sð½x�∞0 ; γÞ: ð7Þ

The action Sð½x�t0; γÞ ¼ ð1=tÞ R t0 dτL(xðτÞ; _xðτÞ; γ) is asso-
ciated to the Lagrangian given by

Lðx; _x;γÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2þφðx;γÞ

q
−

X
ϵ¼�1;ν¼1;2

Jϵ;νðxÞ

þ _x ln

 
−_xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2þφðx;γÞ

p
2
P

ν¼1;2J−1;νðxÞe−ðγqσ
q
xþγwσwx Þδν;2

!
; ð8Þ

where we introduced the transition rates in the continuous

limit Jϵ;ν ≡ limN→∞k
ðνÞ
xNþϵ;xN=N and the function

φðx;γÞ≡4
Y
ϵ¼�1

X
ν¼1;2

Jϵ;νðxÞexp ½ϵðγqσqx þ γwσwx Þδν;2�: ð9Þ

From extremum action principle, ΦðγÞ is the action evalu-
ated for the optimal trajectories satisfying the Euler-
Lagrange equation based on Lagrangian (8) for given initial
conditions xð0Þ and _xð0Þ. The remaining optimization on
initial conditions amounts to select stationary trajectories
only since the CGF is bounded by

max
stat.½x�

S½x� ≤ ΦðγÞ ≤ max
x;_x

Lðx; _x; γÞ: ð10Þ

The lower bound arises from restricting the maximization to
the subset of stationary trajectories (i.e., trajectories with
constant density), while the upper bound follows from
exchanging the maximization and the time integration in
the action. For Lagrangian (8), the maxima in the upper
bound can be shown to coincidewith the stationary solutions
x� of Euler-Lagrange equation. Hence, the upper and lower
bounds match yielding the CGF

ΦðγÞ ¼ max
x�

Lðx�; 0; γÞ: ð11Þ

The LDF for stochastic efficiency can be computed from the
CGFof the partial entropy productions directly [5].When x�
is not unique, the order of the limits t → ∞ and N → ∞ in
(6) is of importance [38]. In the ergodic case, the initial
probability density p0 plays no role and the x� maximizing
the value of the Lagrangian is chosen in Eq. (11). The
efficiency LDF then reads

J��ðηÞ≡ −min
γw

max
x�

Lðx�; 0; γwη; γwÞ; ð12Þ

¼ −min
γw

Φðγwη; γwÞ ≥ 0; ð13Þ

where we used Φð0; 0Þ ¼ 0. In the nonergodic case, the
system can be separated into ergodic regions and the number
of regions accessible with the chosen initial condition p0

will matter [38]. The x� which belongs to those accessible
regions and which maximizes the value of the Lagrangian
must be picked. The efficiency LDF reads

JðηÞ≡ −max
x�

min
γw

Lðx�; 0; γwη; γwÞ; ð14Þ

where the maximum holds on all x� when choosing a
uniform initial condition that makes all ergodic regions
accessible.
Results.—The signature of a phase transition and/or

ergodicity breaking is when x� stops being unique. While
the CGF is always continuous and convex, its derivatives
may become singular [39]. A kink in the CGF signals a
nonconvexity or a linear part in the currents LDF. We now
proceed to prove that the reversible efficiency still corre-
sponds to the faster decay rate of the efficiency probability
without using the convexity of the LDF. The fluctuation
relation ΦðγÞ ¼ Φð−γ − 1Þ imposes that Φ is symmetric
with respect to the point γ ¼ ð−1=2;−1=2Þwhichwedenote
byC. Then, sinceΦ is convex, it has a minimum atC and the
minima of L in Eqs. (12) or (14) are reached at this point
when the efficiency is the reversible one (η ¼ 1) leading to
JðηÞ ≤ Jð1Þ. However, since Φ is not necessarily strictly
convex, the minima may be degenerate and other efficien-
cies can give rise to equally large LDF.
We now turn to our numerical results. In Figs. 3(d)–(f),

we show the efficiency LDFs obtained from Eqs. (12)–(14)
(for N → ∞) or from numerical evaluation of the CGF for
σq and σw (for finite N) using standard spectral techniques
[40,41]. We clearly see that both JðηÞ and J��ðηÞ are
substantially different than the efficiency LDF of finite
machines discussed in Ref. [5]. In both cases their
maximum is degenerate and comprises the reversible
efficiency as we will explain below. We remark that JðηÞ >
J��ðηÞ for all η, as expected since J��ðηÞ can be derived
from the convex hull of the nonconvex LDF for partial
entropy productions from which JðηÞ is derived [38]. The
minimum of both LDF that correspond to the MF efficiency
is unique for V < VMF

cr , while for higher V, a plateau
connects the different MF efficiencies ηlxMF in the ergodic
case or several minima appear in JðηÞ in the nonergodic
case. The plateaux signify that ergodicity enables large
fluctuations between MF efficiencies while nonergodicity
prevents them. Interestingly, our numerical computations
for increasingN show a faster convergence of J��ðηÞ toward
the plateau lying between two stable MF efficiencies.
Efficiency LDFs with multiple minima (or even a plateau)
had not been reported before. Finding these plateaux and
relating them to the existence of a phase transition in the
machine constitutes a key finding of this Letter.
We now discuss the physical origin of the degenerate

maximum of efficiency LDF. In tightly coupled finite
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machines [42,43], the input and output fluxes are propor-
tional at the stochastic trajectory level (−σqα ¼ σw) and
η̄ ¼ α. As a result, the CGF ΦðγÞ displays a translation
invariance: it is zero on the line γq − αγw ¼ 0 and constant
on any other parallel line. Using (13), the efficiency LDF
has a singular minimum zero at efficiency α and a
degenerate maximum everywhere else [9]. This results
from the fact that the stochastic efficiency is either a
constant number α or undefined when both σq and σw

are zero (or more precisely subextensive in Nt). The
degenerate LDF value thus corresponds to the LDF of
the probability of having no extensive hot heat input and
work output. However, when such machines have infinite
state spaces, the notion of tight coupling softens as
extensive entropy fluctuations can arise and compromises
the translation invariance of the CGF (in fact it remains
valid in a bounded region and the CGF diverges elsewhere).
As a result the efficiency LDF still displays a degenerate
maximum but that does not cover anymore all the effi-
ciencies since the minimum is not singular anymore
and is reached continuously [44,45]. In our model, similar

plateaux are observed in Figs. 3(d)–3(f). However the
mechanism responsible for softening the tight coupling
is different and is the phase transition. The CGF has no
global translation invariance anymore, but the Lagrangian
keeps some invariance upon change of γ as one can check
directly

L
�
x;0;−

1

2
þ
�
γwþ1

2

�
ηlx;γw

�
¼L

�
x;0;−

1

2
;−

1

2

�
: ð15Þ

For each density x� over which the maximization is taken
in (12) and (14) and for given η ≠ ηlx� , the Lagrangian
minimizer γw ¼ ðηlx� − 1Þ=ð2η − 2ηlx�Þ is yielding the same
minimum Lðx�; 0;−1=2;−1=2Þ as long as the phase
transition induces no change of maximizer x� (this happens
at efficiency ηA and ηB). This degeneracy is illustrated for
the absolute minimum Φð− 1

2
;− 1

2
Þ on Figs. 3(a)–3(c). In

the end, several ηs share the same Lagrangian’s minimum
associated to the same maximum Jð1Þ of the efficiency
LDF in both the ergodic and nonergodic cases. As in tightly

(a) (d)

(b)

(c)

(e)

(f)

FIG. 3. Left column, CGFs Φ defined in (11) as a function of γq and γw for three different V (a)–(c). Right column, the corresponding
efficiency LDF (d)–(f). On the left, the diagonal black dotted line of slope one is there to guide the eye and the blue dashed line is the
contour line Φ ¼ 0 enclosing the Φ < 0 region that is relevant to calculate (13). The green solid line between A and B defines the
degenerate minimum of the CGF. Its boundaries belong to the dashed gray critical lines separating regions with different dominant
stationary solutions x�. The slopes ηA and ηB, of the lines (OA) and (OB), respectively, give the efficiencies delimiting the higher
plateaux of the efficiency LDFs on the right. When V > VMF

cr ¼ 1.92, one critical line touches the origin indicating bistability in the MF
dynamics. On the right, J��ðηÞ, JðηÞ, and the finite N efficiency LDFs are given, respectively, by the light blue thick solid line, the thin
green solid line and the different dashed lines. The solid black (empty blue) squares show the location of the stable (unstable) MF
efficiencies. The parameters are those of Fig. 2(a).
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coupled finite machines, these degenerate LDF maxima
correspond to the LDF of the probability for no extensive
work and hot heat to arise.
In summary, using a simple model, we found that

efficiency fluctuations are strongly affected by the exist-
ence of a phase transition and depend on the order in which
the long time and large size limit are taken. Nonetheless,
the efficiency probability still decay the faster at the
reversible efficiency, but maybe decay equally fast at other
efficiencies. Our large deviation theory techniques are
general and opens the way to a more systematic study
of efficiency fluctuations in energy converters undergoing a
phase transition.
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initiated this research project. We thank Alexandre
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