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The nonequilibrium steady state of the one-dimensional (1D) Kardar-Parisi-Zhang (KPZ) universality
class has been studied in-depth by exact solutions, yet no direct experimental evidence of its characteristic
statistical properties has been reported so far. This is arguably because, for an infinitely large system,
infinitely long time is needed to reach such a stationary state and also to converge to the predicted universal
behavior. Here we circumvent this problem in the experimental system of growing liquid-crystal
turbulence, by generating an initial condition that possesses a long-range property expected for the
KPZ stationary state. The resulting interface fluctuations clearly show characteristic properties of the 1D
stationary KPZ interfaces, including the convergence to the Baik-Rains distribution. We also identify finite-
time corrections to the KPZ scaling laws, which turn out to play a major role in the direct test of the
stationary KPZ interfaces. This paves the way to explore unsolved properties of the stationary KPZ
interfaces experimentally, making possible connections to nonlinear fluctuating hydrodynamics and
quantum spin chains as recent studies unveiled relation to the stationary KPZ.
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Introduction.—The Kardar-Parisi-Zhang (KPZ) univer-
sality class describes dynamic scaling laws of a variety of
phenomena, ranging from growing interfaces to directed
polymers and stirred fluids [1,2], as well as fluctuating
hydrodynamics [3] and, most recently, quantum integrable
spin chains [4], to name but a few. The KPZ class is now
central in the studies of nonequilibrium scaling laws,
mostly because some models in the one-dimensional
(1D) KPZ class turned out to be integrable and exactly
solvable (for reviews, see, e.g., [5,6]). This has unveiled a
wealth of nontrivial fluctuation properties in such non-
equilibrium and nonlinear many-body problems.
The KPZ class is often characterized by the KPZ

equation, a paradigmatic model for interfaces growing in
fluctuating environments [1,2,5]. It reads, in the case of 1D
interfaces in a plane:

∂
∂t hðx; tÞ ¼ ν

∂2h
∂x2 þ

λ

2

�∂h
∂x

�
2

þ ηðx; tÞ: ð1Þ

Here hðx; tÞ denotes the position of the interface in the
direction normal to a reference line (e.g., substrate), often
called the local height, at lateral position x and time t.
ηðx; tÞ is white Gaussian noise with hηðx; tÞi ¼ 0 and
hηðx; tÞηðx0; t0Þi ¼ Dδðx − x0Þδðt − t0Þ, where h� � �i denotes
the ensemble average. Such random growth develops
nontrivial fluctuations of hðx; tÞ, characterized by a set
of universal power laws. For example, the fluctuation

amplitude of hðx; tÞ grows as tβ, with β ¼ 1=3 for 1D.
This implies

hðx; tÞ ≃ v∞tþ ðΓtÞ1=3χ þOðt0Þ; ð2Þ

with constant parameters v∞;Γ and a rescaled random
variable χ. χ is correlated in space and time but charac-
terized by a distribution that remains well defined in the
limit t → ∞. Another important quantity is the height-
difference correlation function, defined by Chðl; tÞ≡
h½hðxþ l; tÞ − hðx; tÞ�2i. While Chðl; tÞ ∼ t2β for l much
larger than the correlation length ξðtÞ ∼ t1=z, for l ≪ ξðtÞ,
Chðl; tÞ ∼ l2α with α ¼ zβ [2,5]. For 1D, the scaling
exponents are α ¼ 1=2; β ¼ 1=3; z ¼ 3=2 and shared
among members of the KPZ universality class [1,2,5,6].
Moreover, for the 1D KPZ equation (1), the (statistically)
stationary state of this particular model, hKPZeqstat ðxÞ, is
known to be equivalent to the 1D Brownian motion
[1,2,5,6]:

hKPZeqstat ðxÞ ¼
ffiffiffiffi
A

p
BðxÞ: ð3Þ

Here, A≡D=2ν and BðxÞ is the standard Brownian motion
with time x, so that hBðxÞi ¼ 0 and h½Bðxþ lÞ−
BðxÞ�2i ¼ l. The height-difference correlation function for
hKPZeqstat ðxÞ is then simply the mean-squared displacement,
ChKPZeqstat

ðlÞ ≃ Al, with A corresponding to the diffusion

coefficient. Note that, even if we set hðx; 0Þ ¼ hKPZeqstat ðxÞ,
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hðx; tÞ still fluctuates and grows, i.e., hhðx; tÞi ¼ v∞t with
a constant v∞. Nevertheless, the shifted height hðx; tÞ −
v∞t can be always described by Eq. (3) with another
instance of BðxÞ (which is actually correlated with the one
used for the initial condition). For lack of a better term, here
we call it the (statistically) stationary state of the KPZ
equation.
Then the exact solutions of the 1D KPZ equation [7–13],

as well as earlier results for discrete models (e.g., [14,15]),
unveiled detailed fluctuation properties of hðx; tÞ, in
particular the distribution of χ [5,6]. Further, those proper-
ties turned out to depend on the global geometry of
interfaces or on the initial condition hðx; 0Þ, being classi-
fied into a few universality subclasses within the single
KPZ class. Among them, most important and established
are the subclasses for circular, flat, and stationary inter-
faces, characterized by the following asymptotic distribu-
tions [5]: the GUE Tracy-Widom [16], GOE Tracy-Widom
[17], and Baik-Rains distributions [18], respectively (GUE
and GOE stand for the Gaussian unitary and orthogonal
ensembles, respectively). More precisely, with the random
numbers drawn from those distributions, denoted by χ2, χ1,

χ0 [19], respectively, we have χ!d χ2; χ1; χ0 for the three

respective subclasses [20], where !d indicates the con-
vergence in the distribution. For the KPZ equation, the
typical initial conditions that correspond to the three
subclasses are hðx; 0Þ ¼ −jxj=δ ðδ → 0þÞ (circular),
hðx; 0Þ ¼ 0 (flat), and hðx; 0Þ ¼ hKPZeqstat ðxÞ ¼ ffiffiffiffi

A
p

BðxÞ (sta-
tionary). Experimentally, the circular and flat subclasses
were clearly observed in the growth of liquid-crystal
turbulence [5,21,22], but only indirect and partial support
has been reported so far for the stationary subclass [23,24]
(see also [25]). This is presumably because, firstly, for an
infinitely large system, it takes infinitely long time for a
system to reach the stationary state [as ξðtÞ ∼ t2=3 needs to
reach infinity]. Then one should take an interface profile in
the stationary state, regard it as an “initial condition,” and
wait sufficiently long time for the height fluctuations to
converge to the Baik-Rains distribution (see Ref. [23] for
more quantitative arguments). For a finite system of size L,
reaching the stationary state takes a finite time ∼L3=2, but
the approach to the Baik-Rains distribution is now visible
only within a finite time period [27,28], being eventually
replaced by a final state unrelated to the choice of the initial
condition.
Here we overcome this difficulty in the liquid-crystal

experimental system, by generating an interface that
resembles the expected stationary state. Using a holo-
graphic technique developed previously [29], we generated
Brownian initial conditions (3) for the growing turbulence
and directly measured fluctuation properties of the height
hðx; tÞ under this type of initial conditions [Fig. 1(b)]. This
allowed us to carry out quantitative tests of a wealth of
exact results for integrable models in the stationary state.

And indeed, we obtained direct evidence for the Baik-Rains
distribution and the related correlation function. This opens
an experimental pathway to explore universal yet hitherto
unsolved statistical properties of the KPZ stationary state.
Methods.—The experimental system was a minor modi-

fication of that used in Ref. [29] (see Section I of the
SupplementalMaterial and Fig. S1 [30] for details).We used
a standard material for the electroconvection of nematic
liquid crystal [32], specifically,N-(4-methoxybenzylidene)-
4-butylaniline dopedwith tetra-n-butylammoniumbromide.
The liquid crystal sample was placed between two parallel
glass plateswith transparent electrodes, separated by spacers
of thickness 12 μm. The electrodes were surface-treated to
realize homeotropic alignment. The temperature was main-
tained at 25 °C during the experiments, with typical fluctua-
tions of 0.01 °C.
The electroconvection was induced by applying an ac

voltage to the system. In this Letter, we fixed the frequency
at 250 Hz, well below the cutoff frequency near 1.8 kHz,
and the voltage was set to be 23 V. At this voltage, the
system is initially in a turbulent state called the dynamic
scattering mode 1 (DSM1), which is actually metastable, so
that the stable turbulent state DSM2 eventually nucleates
and expands, forming a growing cluster bordered by a
fluctuating interface. One can also trigger DSM2 nuclea-
tion by shooting an ultraviolet (UV) laser pulse [5]. This
not only allows us to carry out controlled experiments but
also to design the initial shape of the interface, by changing
the intensity profile of the laser beam. Growing interfaces
were observed by recording light transmitted through the

(a)

(b)

FIG. 1. Typical snapshots of a flat (a) and a Brownian (b) inter-
face, separating the metastable DSM1 (gray) and growing DSM2
regions (black). hlabðx; tlabÞ denotes the position of the upper
interface in the laboratory frame, at time tlab from the laser
emission. t and hðx; tÞ are defined as follows: t≡ tlab and
hðx; tÞ≡ hlabðx; tlabÞ − hhðx; tinitlab Þix for the flat case (a), t≡ tlab −
tinitlab and hðx; tÞ≡ hðx; tlabÞ − hðx; tinitlab Þ for the Brownian case (b).
See also Movies S1 and S2 [30].
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sample, using a light-emitting diode as the light source and
a charge-coupled device camera.
Flat interface experiments.—In order to realize

Brownian initial conditions (3) that may correspond to
the stationary state, we first need to evaluate the parameter
A. To this end we first carried out a set of experiments for
flat interfaces. Using a cylindrical lens to expand the laser
beam, we generated an initially straight interface for each
experiment and tracked growth of the upper interface
[Fig. 1(a)]. The h axis is set along the mean growth
direction. The x axis is normal to h, along the initial
straight line. Then the coordinates of the upper interface in
the laboratory frame were extracted and denoted by
hlabðx; tlabÞ, where tlab is the time elapsed since the laser
emission. Since the height of interest is the increment from
the initial interface, we approximated it by the spatially
averaged height at the first analyzable time, denoted by
hhðx; tinitlab Þix, with tinitlab ¼ 0.2 s. Then we defined hðx; tÞ≡
hlabðx; tlabÞ − hhðx; tinitlab Þix with t≡ tlab and studied its
fluctuations over 1267 independent realizations. In the
following, the ensemble average h� � �i was evaluated by
averaging over all realizations and spatial points x.
The parameter A can be determined by the relation

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γ=v∞

p
, known to hold in isotropic systems [5,22].

For v∞, we followed the standard procedure [5,33] and
plotted dhhi=dt against t−2=3 [Fig. 2(a), main panel]. From
Eq. (2), we have

dhhi
dt

≃ v∞ þ Γ1=3hχi
3

t−2=3: ð4Þ

Therefore, reading the y intercept of linear regression,
we obtained v∞ ¼ 36.86ð4Þ μm=s, where the numbers
in the parentheses indicate the uncertainty. For Γ, since
the flat interfaces in this liquid-crystal system were already
shown to exhibit the GOE Tracy-Widom distribution
[5,21,22], we have hhnic ≃ ðΓtÞn=3hχn1icðn ≥ 2Þ, where
hXnic denotes the nth-order cumulant of a variable X.

Above all, the variance can be most precisely determined,
and is known to grow, with the leading finite-time correc-
tion, as hh2ic ≃ ðΓtÞ2=3hχ21ic þOðt0Þ [5,22,34]. Therefore,
by plotting hh2ict−2=3 against t−2=3 [Fig. 2(a), inset] and
reading the y intercept of linear regression, we obtained
Γ ¼ 1415ð4Þ μm=s [35]. Consistency was checked by
plotting the histogram of the height, rescaled with those
parameters as follows

qðx; tÞ≡ hðx; tÞ − v∞t

ðΓtÞ1=3 ≃ χ: ð5Þ

Clear agreement with the GOE Tracy-Widom distribution
was confirmed [Fig. 2(b)]. Using those estimates, we
finally obtained A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Γ=v∞
p ¼ 8.762ð13Þ μm.

Brownian interface experiments.—Based on the value of
A evaluated by the flat interface experiments, we generated
Brownian initial conditions (3) with A ¼ 9 μm [36] and
studied growing DSM2 interfaces [Fig. 1(b)]. Each initial
condition was prepared by projecting a hologram of a
computer-generated Brownian trajectory, with resolution of
36.5 μm at the liquid-crystal cell, by using a spatial light
modulator [30]. The height profile in the laboratory frame
hlabðx; tlabÞ was determined as for the flat experiments, but
here the height of interest is the increment from the height
profile at the first analyzable time, hðx; tÞ≡ hlabðx; tlabÞ−
hlabðx; tinitlab Þ, with t≡ tlab − tinitlab and tinitlab ¼ 0.2 s [Fig. 1(b)].
We used a region of width 2730 μm near the center of the
camera view and analyzed 1021 interfaces. Finite-size
effect is expected to be prevented, because the Brownian
trajectories were much longer (4670 μm in x) than the
width of the analyzed region.
First we test whether the interfaces generated thereby are

stationary or not. To this end, we measure the height-
difference correlation function for hlabðx; tlabÞ, Chlabðl; tlabÞ,
and find that it does depend on tlab [Fig. 3(a)], indicating
that the interfaces are not stationary. More precisely, we
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observe that Chlabðl; tlabÞ=l at small l initially takes values
lower than the desired one, A ¼ 9 μm, presumably because
of the finite resolution of the holograms, then increases up
to ≈11 μm. The fact that Chlabðl; tlabÞ=l becomes higher
than A at small l was also observed in our flat data
[Fig. 3(a) inset] as well as in our past experiments [5,21].
However, more important is the behavior at large l, which
turns out to be stable and takes a value close to A ¼ 9 μm.
Therefore, in the following we test whether our interfaces,
though not stationary, can nevertheless exhibit universal
properties of the stationary KPZ subclass, such as the Baik-
Rains distribution.
To determine the scaling coefficients, we plot dhhi=dt

against t−2=3 in the inset of Fig. 3(b). Time dependence of
dhhi=dt confirms nonstationarity of the interfaces again.
Interestingly, as opposed to the result for the flat interfaces
[Fig. 2(a)], here we do not find linear relationship to t−2=3

[Fig. 3(b), inset], but to t−4=3 (main panel). From Eq. (4),
this suggests hχi ¼ 0, consistent with the vanishing mean
of the Baik-Rains distribution hχ0i ¼ 0. If so, the sublead-
ing term of Eq. (4) is indeed expected to be Oðt−4=3Þ,
coming from a t−1=3 term expected to exist in Eq. (2). Then,
by linear regression, we obtained v∞ ¼ 37.126ð15Þ μm=s.
It is reasonably close to the value from the flat experiments,
in view of the typical magnitude of parameter shifts in this
experimental system [22]. For Γ, we took the value from the
flat experiments, so that we do not make any assumption on
the statistical properties for the Brownian case.
Using the values of v∞ and Γ determined thereby, as well

as A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Γ=v∞

p
, we test various predictions for the

stationary KPZ subclass, without any adjustable parameter.
The results are summarized in Fig. 4. Figure 4(a) shows
histograms of the rescaled height qðx; tÞ [Eq. (5)] at
different times t. The obtained distributions at finite times
are already close to the predicted Baik-Rains distribution.
Indeed, convergence in the t → ∞ limit is confirmed
quantitatively by analyzing finite-time corrections in the
cumulants (Section II of the Supplemental Material and
Fig. S2 [30]). In Fig. 4(b), we test the prediction on the two-
point correlation function C2ðl; tÞ≡ h½hlabðlþ x; tþ t0Þ−
hlabðx; t0Þ − v∞t�2i. It is often denoted by gðyÞ in the
rescaled units, with y≡ l=ξðtÞ, ξðtÞ≡ ð2=AÞðΓtÞ2=3, and
gðyÞ≡ ðΓtÞ−2=3C2ðl; tÞ. Its second derivative, g00ðyÞ, plays
the pivotal role in the emergence of KPZ in fluctuating
hydrodynamics [3] and quantum integrable spin chains [4].
This is tested with our experimental data and good agree-
ment is found [Fig. 4(b)]. Figure 4(c) shows the results
of the two-time correlation of hðx; tÞ, Ctðt1; t2Þ≡
hδhðx; t1Þδhðx; t2Þi with δhðx; tÞ≡ hðx; tÞ − hhðx; tÞi.
Our data agree with Ferrari and Spohn’s prediction [38]
that the two-time correlation coincides with that of the
fractional Brownian motion with Hurst exponent 1=3

(hereafter abbreviated to FBM1=3), Ctðt1; t2Þ=Ctðt2; t2Þ →
ð1=2Þ½1þ ðt1=t2Þ2=3 − ð1 − t1=t2Þ2=3� (black line) in the
limit t1; t2 → ∞ with fixed t1=t2 (see Section III of the
Supplemental Material and Fig. S3 [30] for a quantitative
test). Finally, Fig. 4(d) shows the persistence probability
P�ðt1; t2Þ; i.e., this is the probability that hðx; tÞ − hðx; t1Þ
remains always positive (Pþ) or negative (P−) until time t2,
which is found to decay clearly as P�ðt1; t2Þ ∼ Δt−2=3 with
Δt≡ t2 − t1. The persistence exponent is therefore 2=3,
supporting Krug et al.’s conjecture [39] that it also
coincides with that of FBM1=3. Those relations to
FBM1=3 are intriguing, because hðx; tÞ is not Gaussian
and therefore its time evolution is not FBM1=3.
Concluding remarks.—In this Letter, we aimed at

unambiguous tests of universal statistics for the stationary
state of the (1þ 1)-dimensional KPZ class. Instead of
waiting for the interfaces to approach the stationary state,
we generated such initial conditions that are expected to
share the same long-range properties with the stationary
state, specifically, the Brownian initial conditions (3)
with the appropriate diffusion coefficient A determined

-4 -2 0 2 4-1

0

1

2

3

-4 -2 0 2 4 6
q

10-5

100

pr
ob

. 
de

n
si
ty

4s
15s
49.8s

g'
'(

y)

0 0.5 1
t
1
 / t

2

0

0.5

1

C
t(

t 1,
 t 2)

 /
 C

t(
t 2,

 t 2)

t = t
2
  t

1
 (s)

P
(t

1,
 t 2)

4s
15s
49.8s

100 10210-1 10110-2

100
4s
15s
49.8s

t-2/34s
+

15s
30s

 (  5)P P

(a) (b)

(c) (d)
P (t1,t2) t2/3

 (s2/3)

10-1 100 101
t (s)

0.1

0.2

0.3

BR

GOE TW

exact

exact

FIG. 4. Main results of the Brownian interface experiments.
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(legend). The data are found to converge to the Baik-Rains
(BR) distribution, as shown quantitatively in Section II of the
Supplemental Material and Fig. S2 [30]. GOE TW stands for the
GOE Tracy-Widom distribution. (b) Two-point correlation func-
tion g00ðyÞ. The experimental data are evaluated by ½ξðtÞ2=
ðΓtÞ2=3�2hð∂hlab=∂xÞðlþ x; tþ tinitlab Þð∂hlab=∂xÞðx; tinitlab Þi with
different t (legend). The black curve indicates Prähofer and
Spohn’s exact solution [40,41]. (c) Rescaled two-time function
Ctðt1; t2Þ=Ctðt2; t2Þ for different t2 (legend). The data are found
to converge to Ferrari and Spohn’s exact solution [38] (black
curve), as shown quantitatively in Section III of the Supplemental
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beforehand. The resulting interfaces turned out to be not
stationary, but nevertheless our data clearly showed the
defining properties of the stationary KPZ subclass, includ-
ing the Baik-Rains distribution and the two-point correla-
tion function g00ðyÞ [Figs. 4(a) and 4(b)]. Our results also
support intriguing relations to time correlation properties of
the fractional Brownian motion [Figs. 4(c) and 4(d)], which
may deserve further investigations in other quantities. With
this and past studies [5,21,22], all the three representative
KPZ subclasses in one dimension [5,6] were given exper-
imental supports for the universality.
The KPZ class has been extensively studied already for

decades, yet it continues finding novel connections to
various areas of physics (recall recent developments in
nonlinear fluctuating hydrodynamics [3] and quantum spin
chains [4]). We hope our experiments will also serve to
probe quantities of interest for those systems, which may be
not always solved exactly but still have a possibility to be
measured precisely. Explorations of higher dimensions, for
which numerics have played leading roles [6,42], are also
important directions left for future studies.
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