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We propose a realistic cold-atom quantum setting where topological localization induces nonre-
ciprocal pumping. This is an intriguing non-Hermitian phenomenon that illustrates how topology, when
assisted with atom loss, can act as a “switch” for the non-Hermitian skin effect (NHSE), rather than
as a passive property that is modified by the NHSE. In particular, we present a lattice-shaking scenario
to realize a two-dimensional cold-atom platform, where nonreciprocity is switched on only in the
presence of both atom loss and topological localization due to time-reversal symmetry breaking. The
resultant nonreciprocal pumping is manifested by asymmetric dynamical evolution, detectable by
atomic populations along the system edges. Our setup may trigger possible applications in
nonreciprocal atomtronics, where loss and topological mechanisms conspire to control atomic
transport. Its quantum nature will also facilitate future studies on the interplay between non-Hermiticity
and many-body physics.
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Introduction.—Cold atoms on optical lattices provide
a highly promising platform for demonstrating interest-
ing topological and many-body physics [1,2]. Recent
advances in lattice-shaking technology have enabled
unprecedented tuning of effective tunneling amplitudes,
leading to pioneering observations of various exotic
topological states [3–9]. Beyond realizing conventional
static and Floquet topological phases [10–18], cold atoms
in optical systems are also suitable quantum platforms
for simulating higher-order topology [19–24] and non-
Hermitian effects [25–28], two classes of phenomena of
intense current interest. Indeed, non-Hermiticity can be
experimentally implemented through optically induced
depopulating losses [27], and be fine-tuned to exhibit
non-Hermitian topological degeneracies like exceptional
points [26,29–32], lines [33–41], and surfaces [42,43], all
possessing rich geometric structure without Hermitian
analogs [44–46].
In this Letter, we propose the cold-atom realization of a

novel phenomenon where topological localization in one
direction breaks the reciprocity of a two-dimensional (2D)
lattice system in the presence of atom loss, leading to
transverse nonreciprocal pumping. In contrast to much
contemporary theoretical [47–58] and experimental
[59–62] literature focusing on the breakdown of conven-
tional bulk-boundary correspondences (BBCs) caused by
the non-Hermitian skin effect (NHSE), i.e., eigenmode
localization at the boundaries, our proposal illustrates how
nontrivial topology can conversely cause nonreciprocal
pumping, as illustrated in Fig. 1(e). The resultant topology-
induced NHSE, with non-Hermiticity implemented via
atom loss only, is marked by corner mode accumulation
scaling extensively with the system length [63],

fundamentally unlike higher-order topological corner
modes, Hermitian or otherwise [24,64–67]. Our results
provide a new application of topology in non-Hermitian
systems and may stimulate further work on nonreciprocal
atomtronics, exploiting both atom loss and topological
mechanisms to control atomic transport. Relying on a
quantum platform with tunable interactions, our proposal
is also intrinsically poised for further exploration on how
the NHSE interplays with many-body phenomena like
Bose-Einstein condensation, fractionalization, charge den-
sity waves, and Mott physics.
Our setup consists of an optically shaken lattice

accommodating cold atoms, designed such that lattice
anisotropy and antiphase shaking conspire to yield non-
trivial first-order topological edge modes. The required
atom loss is introduced through selective depopulation,
by exciting the atoms into an excited state with a resonant
beam. Together with lattice shaking, this effectively
generates nonreciprocity with two sublattices favoring
opposite directions, which can hence be balanced by
intersublattice couplings and yields net reciprocity.
Nevertheless, this picture breaks down at the system’s
edge, because topological edge modes possess sublattice
polarization, hence breaking this reciprocity, and NHSE
occurs in the transverse direction. Therefore, we can
switch on and off the NHSE through inducing topological
phase transitions. The resultant NHSE is further identi-
fied via asymmetric dynamical evolution arising from the
broken reciprocity.
2D optical lattice and model Hamiltonian.—Consider a

Fermi gas in a two-frequency, periodically driven 2D
superlattice formed by three directed optical standing
waves, described by the following potential [Fig. 1(a)]:
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with d ¼ λL=2 the lattice constant along the y direction. Vy

describes the strength of a static double-well potential
realizable with two pairs of interfering laser beams
[68–71]. Terms with coefficients V� represent additional
potentials with time-modulated phases with frequency
ω1 and small amplitude modulation of frequency ω2

through V�ðω2tÞ ¼ Vxy½1� A cosðω2tþ φÞ�=2. Because
of this bichromatic driving [9], the positions of all the
potential minima acquire time modulations −d1 cosðω1tÞ−
d2 cosðω2tþ φa;bÞ, with φa ¼ φb þ π ¼ φ for sublattices
a and b [72] [see Fig. 1(b)] and d1 and d2 explicitly given in
Supplemental Material [72]. Further, we consider resonant
frequency values ω2 ¼ 2ω1 and ℏω2 close to the energy
difference εspx

between the s (j↓i) and px (j↑i) orbitals of
the fermions, so that they can be coupled by a two-photon

interorbital resonant couplings [9,75,76]. Non-Hermiticity
is introduced by on site atom loss on the j↓i state by using
a resonant optical beam to transfer the atoms to an ex-
cited state jei [Fig. 1(b)], with the loss rate controlled by
the intensity of the resonant beam [27]. For other mech-
anisms causing two pseudospins to have different rates of
loss, our description also applies upon adding an overall
imaginary term to the spectrum (which leads to more decay
in the dynamics). Finally, while our setup is valid for
generic parameter values, we shall set λL ¼ 532 nm in the
numerics that follow and consider small shaking ampli-
tudes d2 ¼ d1=20 ¼ λL=200 [77].
In the high frequency regime with small oscillation

amplitudes, the Magnus expansion approximation gives
the effective static Hamiltonian HðkÞ ¼ Ψ†ðkÞh2DðkÞΨðkÞ
withΨ†ðkÞ ¼ ðâ†↑k; b̂†↑k; â†↓k; b̂†↓kÞ creating states on a and b
sublattices and j↑i and j↓i pseudospins, and [72]

h2DðkÞ ¼ hþσ ðkÞσ0 þ h−σ ðkÞσ3 þ hþτ ðkÞτ0 þ h−τ ðkÞτ3; ð2Þ

h�σ ðkÞ ¼ −ð2t�;x cos kx − Δ� � igÞτ0
− ft�;y þ t0�;y½cos ky þ cosðky − kxÞ�gτ1
− t0�;y½sin ky þ sinðky − kxÞ�τ2;

h−τ ðkÞ ¼ ðtv cosφÞσ1 þ ðtv sinφÞσ2;
hþτ ðkÞ ¼ ð2td sin kxÞσ2: ð3Þ

Here τi and σi (i ¼ 1, 2, 3) are two sets of Pauli matrices
acting on the sublattice and pseudospin spaces, respec-
tively, with τ0 and σ0 their corresponding 2 × 2 identity
matrices. The various coupling amplitudes tv, td, t�;α ¼
ðt↑;α � t↓;αÞ=2, and t0�;α ¼ ðt0↑;α � t0↓;αÞ=2 arise from over-
lap integrals between lattice orbitals, as detailed in
Supplemental Material [72]. This Hamiltonian can be
visualized as the lattice in Fig. 1(c) with each τ ∈ fa; bg
row represented by a two-leg lattice with couplings
between s and px orbitals differing by a π phase, i.e., φa ¼
φb þ π [Fig. 1(d)]. The shaking-induced interorbital cou-
pling tv and td breaks the time-reversal (TR) and inversion
symmetries, respectively, giving rise to Chern topology [7].
Non-Hermiticity enters here through −igτ0ðσ0 − σ3Þ,
depicting a loss mechanism acting only on the j↓i sector.
Δ− represents an energy offset between j↑i and j↓i sectors,
and Δþ represents an overall energy shift that can be
neglected. For concreteness, we have considered a lattice
loaded with a fermionic gas of 173Yb atoms following
Refs. [8,9], although our scheme is also applicable for other
cold atoms.
Edge modes from topological localization.—In the static

(ω1 ¼ ω2 ¼ 0) Hermitian limit, h2DðkÞ possesses sublattice
symmetry and is topologically nontrivial with Z-quantized
1D Berry phase
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FIG. 1. (a) 2D optical lattice depicted by Eq. (1); dark blue
color indicates minima of the potential, generating the a, b
sublattices. (b) Effective 1D potential experienced by each
sublattice along the x direction, with j↑i and j↓i representing
the px and s orbitals. Atoms in the j↓i state are resonantly excited
to a third state jei, leading to loss. (c) The corresponding lattice
structure of (a); pink arrows show the direction of nonreciprocity
of each sublattice. (d) Two-leg system for each sublattice [white
and gray rows in Fig. 1(c)], with yellow and green sites
representing up and down pseudospins. (e) Mechanism for
topology-induced nonreciprocal corner modes. The reciprocity
is broken when topological boundary modes localize on the a (b)
sublattices along the lower (upper) edge [white (gray) bars], such
that nonreciprocal pumping toward the left (right) dominates.
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for each nth band junðkx; kyÞi. When TR symmetry is
broken through lattice shaking at nonzero ω2 ¼ 2ω1 [72],
its resultant topological boundary modes along the y edge
cross over to Chern chiral edge modes, analogous to the
zigzag edge modes of graphene or other honeycomb
lattices under a circularly polarized laser [78–80]. As
evident in Fig. 2 with open boundary conditions (OBCs)
along y, these Chern edge states (red) are, however, only
weakly separated due to the small shaking amplitudes and
hence small interpseudospin coupling. This weak coupling

also yields almost quantized Berry phases γy1 and γy4 shown
in Fig. 2. The average Berry phase γ̄yn ¼

P
kx γ

y
nðkxÞ=Nx

used later gives the ratio of the total number of 1D edge
modes to Nx under periodic boundary conditions (PBCs)
along x and OBCs along y, which is proportional to the
corner mode accumulation strength [63] and hence the
consequent nonreciprocal pumping elaborated below.
Topology-induced nonreciprocal corner modes.—The

non-Hermiticity introduced by on site atom loss does
not merely induce a complex spectrum [Fig. 3(a)].
Interestingly, it also produces strong mode accumulation
at two opposite corners, as conceptually sketched in
Fig. 1(e) and quantitatively plotted in Fig. 3(b).
Fundamentally unlike higher-order topological corner
modes, our corner mode density scales extensively with
the system length, as elucidated in Fig. 3(c) by the linear
scaling behavior of the total mode intensity ρsumðx; yÞ ¼P

n;σ jψnðσ; x; yÞj2 with system length Nx at the nontrivial
corner ðx; yÞ ¼ ðNx; 1Þ [81]. Since the number of topo-
logical boundary modes is fixed by the topological invari-
ant, this extensive scaling of mode intensity must be
alternatively originated from some form of NHSE [82]
realizing one form of hybrid corner modes [63] by
exploiting atom loss.
To understand this enigmatic corner mode accumulation,

first note that the loss term −igτ0ðσ0 − σ3Þ in the j↓i sector
hardly changes the topological modes, as evident from
comparing the Re½E� inset of Fig. 3(a) with the dissipation-
less band structure in Fig. 2. With chosen experimental
parameters producing considerably weak interorbital cou-
plings tv and td, one can also largely confine the damping
effects within the j↓i sector [orange in Fig. 3(a) with large
-Im½E� ], and observe nonreciprocal effects in the j↑i sector
possessing almost real eigenenergies.
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FIG. 2. x-PBC=y-OBC spectrum of h2D without atom loss.
Almost degenerate chiral edge modes (red curves) reflect the
Chern topology, with their presence (or absence) at each kx
depending on whether the nearly quantized Berry phases γy1 and
γy4 are close to π or zero. Effective parameters are φ ¼ π=2 and
ftþ;x; t−;x; tþ;y; t−;y; t0þ;y; t

0
−;y; Δ−; td; tvg ¼ f0.38; 0.43; −0.11;

−0.41; 0.44; 0.14; 2.07; −0.09; 0.16g h × kHz, corresponding
to the experimentally realistic parameters Vxy¼3Er¼ 3

2
Vy and

ω2¼2ω1¼10×2π kHz, with Er¼ðπ2ℏ2=2md2Þ¼h×4.1 kHz.

FIG. 3. (a) Imaginary and real parts of the x-PBC=y-OBC spectrum for nonzero loss g ¼ 0.2 h × kHz, color indicating different
bands. Other parameters follow Fig. 2, except for larger frequencies ω2 ¼ 2ω1 ¼ 12 × 2π kHz. (b) The corresponding summed
eigenmode distribution ρsumðx; yÞ, with corner mode densities > Oð1Þ, much greater than those of ordinary topological corner
modes. (c) Scaling of ρsumðx; yÞ with system length Nx at various positions indicated in (b), with the NHSE giving rise to linear, i.e.,
extensive, scaling at the corner ðNx; 1Þ (blue) and to a smaller extent along an edge ðNx; Ny=2þ 1Þ (yellow), but not deep in the bulk
at ðNx=2; Ny=2þ 1Þ (purple) and the other edge at (Nx=2,1) (red). (d) The x direction IPR for different sublattices y as the
intersublattice couplings ðtσ;y; t0σ;yÞ → cðtσ;y; t0σ;yÞ are suppressed, computed for Nx ¼ 40. (e) Phase diagram showing anticlockwise
(clockwise) topology-induced nonreciprocal pumping phases over a large range of optical lattice parameters φ and Vxy=Vy. The
average Berry phase γ̄y is nonzero in the topological phases, where the IPRx

↑ for pseudo-spin-up component also peaks. The shaking
frequency is set as ω2 ¼ 2ω1 ¼ ϵspx

=ℏ.
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We can obtain intuition about how these nonreciprocal
effects can be topology-induced from a gedanken experi-
ment of tuning the couplings ðtσ;y; t0σ;yÞ → cðtσ;y; t0σ;yÞ,
where c ∈ ½0; 1� interpolates between the decoupled limit
and the full values of these couplings. In the fictitious c ¼ 0
decoupled limit, the system is decoupled into a series of 1D
two-leg ladders as in Fig. 1(d), with φa;b differing by π
between the sublattices a and b. Upon rotating the Pauli
matrices, the on site loss term igσ3 becomes nonreciprocal
couplings igσ2, and the decoupled 1D two-leg ladders
resemble the non-Hermitian Su-Schrieffer-Heeger (SSH)
model possessing the NHSE [47,72,83]. Hence, the two
sublattices exhibit extensive skin mode accumulation at
either the left (x ¼ 1) or right (x ¼ Nx) edge, with the
same strength but opposite pumping directions when
sinφa ¼ − sinφb (note that φa − φb ¼ π) [72].
The physical spatial eigenmode distribution is obtained

by restoring tσ;y and t0σ;y, i.e., by tuning c from zero to one.
This couples the two SSH-like sublattices, leading to
destructive interference of the equal and opposite
NHSEs. Since the τ ¼ a, b sublattices of h2DðkÞ take
similar forms, bulk modes are necessarily equitably dis-
tributed with little residual nonreciprocal pumping and,
hence, mode accumulation. However, its topological modes
along the top (y ¼ Ny) and bottom (y ¼ 1) are intrinsically
sublattice polarized. Hence, the top- and bottommost rows
of sites are expected to experience equal and opposite
uncanceled NHSEs, leading to extensive mode accumu-
lation at two of the four corners [Fig. 1(e)]. This mode
accumulation within each sublattice row y can be quanti-
fied by the inverse participation ratio (IPR) in the x
direction,

IPRxðyÞ ¼
X
x

� P
σ;njψnðσ; x; yÞj2P

x

P
σ;n jψnðσ; x; yÞj2

�
2

; ð5Þ

with ψnðσ; x; yÞ the nth eigenstate, plotted against c for
various rows y in Fig. 3(d). In particular, in the decoupled
limit c ¼ 0, IPRxðyÞ is constant for different y, indicative of
equally strong NHSE for each decoupled 1D two-leg
ladder. As c increases to realistic values, the ladders couple,
and IPRxðyÞ rapidly decreases to the uniform limit 1=Nx
in the bulk (1 < y < Ny), implying full delocalization
along x. However, at the bottom (top) boundaries at y ¼
1; Ny (blue curves), IPRxðyÞ stabilizes at values much
higher than 1=Nx as c increases, indicating left (right) mode
accumulation which, in 2D, gives corner mode accumu-
lation [Fig. 3(b)]. This nonreciprocal pumping can be also
regarded as a strong manifestation of topological localiza-
tion along y.
These observations are further digested in the phase

diagram of Fig. 3(e). Intuitively, corner accumulation
should be expected if 1D edge states exist in the non-
dissipative limit, e.g., whenever the average Berry phase

γ̄y ≡ γ̄y4 of the least dissipative (fourth) band is nonvanish-
ing. In addition, Fig. 3(e) reveals that the corner mode
localization, now quantified by the IPRx

↑ of the j↑i sector
only (since the least dissipative band is almost j↑i
polarized), also varies strongly with optical lattice param-
eters φ and Vxy=Vy. Indeed, a weaker Vxy indicates
stronger Hermitian couplings along the x direction, which
effectively weakens the nonreciprocal pumping. Also, the
NHSE completely disappears when φ ¼ 0 or π [72]. Since
γ̄y ¼ 0 when Vxy=Vy ≳ 2.1 (i.e., no more edge states),
most pronounced corner accumulation occurs at moderate
Vxy=Vy and φ ¼ �π=2, with the sign determining the
chirality of the corner accumulation.
Dynamical behavior from nonreciprocal pumping.—

While the IPR can measure the extent of induced locali-
zation, its purported nonreciprocal origin has to be verified
through dynamical behavior. We compare the time evolu-
tion of initial states ΨL=R

ini ¼ P
x;y

P
σ¼↑;↓ ψ

L=R
ini ðσ; x; yÞ

τ̂†σ;x;yj0i localized on the left and right corners, i.e.,
ψL
inið↑; 1; NyÞ ¼ 1 and ψR

inið↑; Nx; NyÞ ¼ 1, respectively,
with vanishing amplitudes for j↓i and all other sites.
The evolved states at time t are given by ΨL=R

t ¼
e−iHt=ℏΨL=R

ini . The presence of topology-induced nonrecip-
rocal pumping can be saliently observed in snapshots of
ΨL=R

t after a fixed time t ¼ t0. Figures 4(a)–4(d) illustrate
the spatial densities ρL=Rt0 ðx; yÞ ¼ P

σ jψL=R
t0 ðσ; x; yÞj2, σ ¼

↑;↓ for a representative t0 ¼ 2 ms, with Figs. 4(a) and 4(c)

FIG. 4. (a)–(d) Population distribution snapshots of the states
ΨL=R

t after t0 ¼ 2 ms of evolution with g ¼ 0.5h × kHz, as
experimental signature of topology-induced corner accumulation.
The initial state is prepared at (a),(c) ðσ; x0; y0Þ ¼ ð↑; 1; NyÞ and
(b),(d) ð↑; Nx; NyÞ, as indicated by the dashed lines. Pink arrows
in (a),(b) indicate the direction of corner accumulation. For
comparison, gray shadows indicate the same states evolving
without dissipation. Other parameters are φ ¼ π=2, Vy ¼ 2Er,
and (a),(b) Vxy ¼ 3Er, ω1 ¼ 6 kHz; (c),(d) Vxy ¼ 4.5Er,
ω1 ¼ 9 kHz. In (a), ΨR evolves almost identically as the no-loss
case, hence covering the gray shadow. (e) Evolution of total
population nL=R for cases (a)–(d) with different initial states and
topology. Case (a), i.e., ΨR with γ̄y > 0 (blue circles), decays
least, manifesting topology-induced nonreciprocal pumping.
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showcasing ρRt0 and Figs. 4(b) and 4(d) showcasing ρLt0 , as
indicated by the vertical dashed lines. In the presence of
topological edge modes localized primarily on one sub-
lattice (i.e., γ̄y ≠ 0), a state is subjected to asymmetric loss
during its spreading. As illustrated in Figs. 4(a) and 4(b) for
the case with right-to-left nonreciprocal pumping at y ¼ Ny

row, ΨL
t [Fig. 4(b)] spreads from the left corner toward

the right and is significantly more attenuated than ΨR
t

[Fig. 4(a)] that is launched from the right. In contrast, when
topological localization is absent [Figs. 4(c) and 4(d)], both
ΨR

t andΨL
t dissipate rapidly with time and do not propagate

much along the boundaries, albeit having the same loss
mechanism. Note that this asymmetric propagation is
induced by NHSE switched on by topological localization
and is not the chiral propagation of the Chern topology,
which is extremely weak in our system. This asymmetry in
dynamical propagation can be further quantified through
the decaying of the population

nL=RðtÞ ¼
X
x;y

ρL=Rt ¼
X
x;y

X
σ

jΨL=R
t ðσ; x; yÞj2: ð6Þ

In Fig. 4(e), the initial state ΨR in the nontrivial (γ̄y > 0)
phase, depicted by Fig. 4(a), indeed gets to decay the
slowest. Both ΨR and ΨL in the nontopological cases
[Figs. 4(c) and 4(d)] decay even faster thanΨL with γ̄y > 0.
Discussion.—To date, classical systems have been the

main platforms to study NHSE, leaving the control of
NHSE in tunable quantum systems still in its infancy. Via
lattice shaking, we have proposed a versatile quantum
platform where nontrivial topology, instead of being
modified by non-Hermiticity, can induce nonreciprocal
pumping when assisted by atom loss. Thus, NHSE can
be turned on and off in a flexible and robust manner by
tuning parameters to reach different topological phases,
with no need to eliminate and reintroduce lossy mecha-
nisms. While certain perturbations may also induce NHSE
by generating unbalanced nonreciprocity, the latter will be
sensitive to the perturbation details. By contrast, topologi-
cal localization always induces an almost complete sub-
lattice polarization along the boundaries, thus yielding
robust nonreciprocal pumping.
Our large parameter space may afford further exploration

into various active topical issues. As the effective two-leg
ladders of each sublattice possess 1D Z-type topology, they
also support topological edge localization along the x
direction. The combination of both x and y localizations
can lead to higher-order topological corner modes [84] in
an extended parameter range [72]. With on site interactions
induced by Feshbach resonances [85,86] or long-range
interaction from dipolar Fermi gases, such as magnetic
atoms [87,88], polar molecules [89–91], and Rydberg
atoms [92,93], our proposed system also paves the way
for exploring quantum many-body physics in the presence
of non-Hermitian pumping, e.g., effective Bose-Einstein

condensates for bosonic cold atoms and real-space Fermi
surfaces [94] for fermions, as well as non-Hermitian
fractional quantum Hall [95] and Mott insulators.
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