
 

Comment on “Sign-Reversing Hall Effect
in Atomically Thin High-Temperature
Bi2.1Sr1.9CaCu2.0O8 + δ Superconductors”

Materials fabrication and measurement technologies have
progressed tremendously during the past two decades.
Experiments that were once very difficult in the 1990s
can now be done routinely. What was reported by Zhao et al.
[1] is such an elegant realization. An examination of their
data revealed a quantitative validation to what was predicted
in the 1990s [2,3], corroborated well with another recent
elegant experiment [4]. Nevertheless, Zhao et al. were still
formulating their interpretation within an independent vortex
dynamical model whose theoretical foundation had been
questioned. Here I wish to point out that by overlooking the
vortex many-body effect their main conclusion is incorrect.
To indicate the abundance of theoretical models, they

stated that, “A rich theoretical lore attributes the Hall
anomalies to either vortex pinning, details of the vortex
core electronic spectrum, hydrodynamic effects, super-
conducting fluctuations, Berry phase, and charges in the
vortex core” [1]. While their brief summary did capture the
mood in the community, their Ref. [5] was not on Hall
anomaly. For all those independent vortex dynamical
models for Hall anomaly an inadequate physics had been
reasoned [6]. Instead, a different kind of Hall anomaly
model was proposed [2,3] to explain such a generic effect.
It was based on the vortex many-body effect in competition
with pinning. A few quantitative predictions were obtained
as well. It is essentially the same physics as what is known
in semiconductors: A pinned vortex lattice behaves as a
filled topologically trivial band, with zero Hall effect; the
effective topological number carriers, either thermally
activated or externally induced, are responsible for the
Hall effect as well as the longitudinal resistance. It was
tested qualitatively [7]. The relevancy of such a model to
Hall anomaly was acknowledged experimentally [8] and
supported by data from other laboratories [4,5,9–18]. The
authors of Ref. [1] did not report the comparison between
their data and the vortex many-body Hall anomaly model.
To advance their theory of independent vortex dynamics

type, they concluded that, “However, neither the explanation
nor the consensus of the Hall behavior in the entire
temperature range was achieved” [1]. This may be only
partially valid in regards to the consensus. Nevertheless, an
existing vortex many-body model has not only explained
one sign change, but also predicted that two or more sign
changes are possible. In addition, the Arrhenius law behavior
of the resistance is a natural outcome. Furthermore, it has
two quantitative predictions that the authors may already
have data to directly check against.
(1) At low enough magnetic field the sign change may

disappear. It is curious that they did not present data for
magnetic fields below 2 T but above the effective Hc1. In
thin films the effective Hc1 can be very small.

(2) The quantitative formulas for the “activation energy”
appeared in the Arrhenius law was given [3], the energy
scale to generate effective carriers, vortex vacancies (or
interstitials) in the vortex lattice. This energy scale again
may be tested directly. The contributions of vacancies and
interstitials to resistances are additive, same signs to
longitudinal but opposite to Hall resistance.
From a general symmetry and topology perspective it

was demonstrated that the Magnus force is insensitive to
nonmagnetic impurities. Such a result was regarded as one
of very few results in many-body physics [19]. Direct
experimental measurement of the Magnus force on moving
vortices validated such a prediction [20]. Full vortex
dynamics has now been obtained from microscopic BCS
theory without the uncontrolled relaxation time approxi-
mation [21]. In order for their independent vortex dynami-
cal theory to apply, their Ref. [13], the Magnus force would
have to be practically reduced to zero to have a near zero
Hall effect. This key ingredient in their theory was
achieved by a nontopological means of relaxation time
approximation, but it should be pointed out that the type
of theory relied on by the authors was questioned long
ago because of the invalidation in the use of relaxation
time approximation to obtain vortex friction. It has been
known that, similar to a moving vortex, the friction of a
moving object in a Fermi sea can be obtained without
such approximation [22].
In conclusion, Zhao et al. had interpreted their main

data based on an invalid independent vortex dynamics
model and have reached their main conclusion incorrectly.
Instead, Hall anomaly in type-II superconductors is gen-
erally an effect of the vortex many-body effect, which was
not discussed by the authors though it is consistent with
their observations.
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