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We introduce two generalizations of core percolation in graphs to hypergraphs, related to the minimum
hyperedge cover problem and the minimum vertex cover problem on hypergraphs, respectively. We offer
analytical solutions of these two core percolations for uncorrelated random hypergraphs whose vertex
degree and hyperedge cardinality distributions are arbitrary but have nondiverging moments. We find that
for several real-world hypergraphs their two cores tend to be much smaller than those of their null models,
suggesting that covering problems in those real-world hypergraphs can actually be solved in polynomial
time.
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As a natural generalization of a graph, a hypergraph
consists of vertices and hyperedges [1]. A hyperedge can
simultaneously connect any number of vertices, which
facilitates a more faithful representation of many real-world
networks [2,3]. For example, given a set of proteins and a
set of protein complexes, the corresponding hypergraph
naturally captures the information on proteins that interact
within a protein complex [4]. For a biochemical reaction
system, the hypergraph representation indicates which
biomolecules participate in a particular reaction [4,5]. In
computer science, the factorization of complicated global
functions of many variables can often be represented by a
factor graph, which can be mapped to a hypergraph [3–8].
In social science, a collaboration network can also be
represented by a hypergraph, where vertices represent
individuals and hyperedges connect individuals who were
involved in a specific collaboration, e.g., a scientific paper,
a patent, a consulting task, or an art performance [7,8].
As in graphs, the degree of a vertex in a hypergraph is the

number of hyperedges that connect to it. The number of
vertices connected by a hyperedge is called the cardinality
of that hyperedge. If all hyperedges have the same
cardinality K, the hypergraph is said to be uniform or K
uniform [9–11]. Note that a graph is just a two-uniform
hypergraph.
The core of a graph—defined as the remainder of the

greedy leaf removal (GLR) procedure where leaves (ver-
tices of degree one) and their neighbors are removed
iteratively from the graph—has been related to the con-
ductor-insulator transition [12], structural controllability
[13], and many combinatorial optimization problems [14].
Note that this core is fundamentally different from the

k-core [15–17] that is obtained by recursively removing all
vertices with degree less than k, or the giant connected
component [18–21]. The GLR removes not only vertices
with degree one (which resembles the 2-core) but also their
neighbors regardless of their degrees [22,23]. Indeed,
the core size is related to a fundamental combinatorial
problem—the minimum vertex cover (MVC) problem,
which aims to find the smallest set of vertices in a graph
so that every edge is incident to at least one vertex in the set
[24]. If the core is absent, then the MVC problem is
solvable in polynomial time. Otherwise, if the core exists
and is extensive in size, then the MVC problem is generally
NP hard [24–26]. As the dual of the MVC problem, the
minimum edge cover problem aims to find the smallest set
of edges so that for every vertex in the graph there is at least
one edge incident to it. Both covering problems can be
defined similarly on hypergraphs. The minimum edge
cover problem on graphs can be computed in polynomial
time [27]. Yet, this is not true for hypergraphs, where
both the minimum hyperedge cover (MHC) and the MVC
problems are generally NP hard [28]. Note that the MVC
and MHC on hypergraphs are related to many real-world
problems, e.g., finding the optimal drug combination in
pharmacology [29], searching files in storage systems [30],
etc. Typically these problems can be solved using approxi-
mate algorithms, e.g., highest-degree-first [29,31] and
simulated annealing [29]. Here we show that those approxi-
mate algorithms are not always necessary when the
core is absent. To achieve that, we extend the concept of
the core in graph to the hypergraph case, and define
two cores associated with the MVC and MHC problem,
respectively.
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Let us consider the MHC problem of the hypergraphH0

in Fig. 1(a), which has three hyperedges fh1; h2; h3g and
four vertices fv1; v2; v3; v4g. The hyperedge h3 contains all
the vertices in h1, as well as vertex v4, thus h1 is not
necessary for the MHC and can be removed, leading to the
hypergraph H1 shown in Fig. 1(b1). In H1 the vertex v2 is
contained by hyperedge h2 that contains also vertex v1.
Hence if v1 is covered, v2 is also covered. We can therefore
remove v2 from H1. By iteratively removing vertices and
hyperedges using these rules, we get the hypergraph shown
in Fig. 1(b3), for which solving the MHC problem is trivial.
The MVC problem is dual to the MHC problem, hence we
can obtain a dual set of rules. In the hypergraph H0, the
hyperedge h3 contains all the vertices in h1, as well as
vertex v4, thus if h1 is covered h3 is also covered. We can
therefore remove h3 and obtain the hypergraph H2 in
Fig. 1(c1), for which we find that vertex v1 is redundant and
can be removed (since v2 covers the same hyperedge as v1
and also covers hyperedge h1). By iteratively removing
vertices and hyperedges using these rules, we get the
hypergraph shown in Fig. 1(c3), for which the MVC
problem is trivial. Similar rules have been proposed to
reduce the complexity of set covering in the context of
linear programming [32]. But the systematic study of the
size of a core based on these rules is still missing.
The example shown in Fig. 1 prompts us to define three

sets of hyperedges (or vertices): (i) S is a solution of
the MHC (MVC) problem; (ii) S̃ contains hyperedges
(vertices) that can be determined to be part of S using
our approach; and (iii) the core hcore (vcore) contains the
hyperedges (vertices) that cannot be determined if they
belong to S or not using our approach. If the cardinality
(degree) of a hyperedge (vertex) is zero, then it should not
be covered. For the remaining vertices (hyperedges) we can
find the vertices (hyperedges) that belong to each category
based on the following rules. (Rule-1): Consider hyper-
edges h1 and h2 that contain the set of vertices V1 and V2. If
V1 and V2 are not empty sets, and V1 ⊆ V2, we remove h1
(or h2) to solve the MHC (or MVC) problem, respectively.
(Rule-2): Consider vertices v1 and v2 that are contained by

the set of hyperedges H1 and H2. If H1 and H2 are not
empty sets, andH1 ⊆ H2, we remove v2 (or v1) to solve the
MHC (or MVC) problem, respectively. We repeat this
process until no more vertices or hyperedges can be
removed. In the final hypergraph, hyperedges (vertices)
with cardinality (degree) one belong to S̃ [Figs. 1(b3)
and 1(c3)]; hyperedges (vertices) with cardinality (degree)
larger than 1 belong to hcore (vcore). Note that these two
rules do not first aim to find leaf vertices or hyperedges
(i.e., vertices or hyperedges of degree or cardinality one),
and then delete them along with their neighbors. Instead,
they first remove extra structures for MHC or MVC,
“neighbors,” and the leaves are just leftovers.
We emphasize that these two rules can be considered as

the generalized GLR procedure on hypergraphs, which
reduces to the standard GLR procedure on graphs, when we
restrict r ¼ 2 for all the hyperedges. And this procedure is
fundamentally different from the procedure to obtain the k
core in hypergraphs [33]. Note that even if the resulting
hcore (vcore) is very small but nonzero, the generalized GLR
procedure is better than approximation algorithms in
solving the MHC (MVC) problem, because it explicitly
tells us which hyperedges (vertices) belong to the solution
S, which do not, and which cannot be determined.
Since the hypergraph core hcore is closely related to the

MHC problem, we study the corresponding core percola-
tion problem on random hypergraphs [34]. To achieve that,
based on the generating function formalism [20,35], we
generalize the mean-field approach proposed for the graph
case [22]. Consider a large uncorrelated random hyper-
graph H with nondiverging moments of vertex degree and
hyperedge cardinality distributions (see Supplemental
Material [21], Sec. VII for potential generalizations). It
is useful to define two types of removable vertices: a vertex
is (i) α removable (leftover leaves in the end) if it is or can
become a leaf vertex; (ii) β removable (removed based on
the two rules mentioned) if its degree is larger than one and
belongs to at least one leaf hyperedge. Dually, we define
two types of removable hyperedges: a hyperedge is (i) δ
removable (leftover leaves in the end) if it is or can become
a leaf hyperedge; (ii) ϵ removable (removed based on the
two rules mentioned) if it has cardinality r and is removed
because it is connected to (r − 1) β-removable vertices. We
can determine the category of a vertex v in H by the
categories of its neighboring hyperedges in the modified
hypergraph Hnfv; hg with vertices v and hyperedges h
removed fromH, using the following rules: (i) α-removable
vertices are vertices that are removed because, in the
original hypergraph H, they are only covered by a hyper-
edge h. Such vertex can only be covered by hyperedge h,
and therefore can be removed from the original hypergraph
H along side with h and all vertices contained by h.
Avertex v, can become an α-removable vertex in two ways:
it can be a leaf vertex, or all hyperedges, except h, are
removed in a way that does not remove v, defined

(a)

(b1)

(c1) (c2) (c3)

(b2) (b3)

FIG. 1. Generalized greedy leaf removal helps us solve the
minimum hyperedge cover and the minimum vertex cover
problems on hypergraphs. Vertices are represented by dots and
hyperedges by circles. The green vertices and hyperedges in (b3)
and (c3) are the solution to the MHC or MVC problem,
respectively.
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as ϵ-removable hyperedges; (ii) β-removable vertices are
removed because they are automatically covered by a
hyperedge that is determined to be belong to the covering
set. Therefore, at least one neighboring hyperedge is δ
removable. Similarly, we can determine the category of a
hyperedge h in H by the categories of its neighboring
vertices in the modified hypergraphHnfv; hgwith vertex v
and hyperedge h removed from H, using the following
rules: (iii) δ-removable hyperedge: at least one neighboring
vertex is α removable; note that if a vertex is α removable,
meaning its degree is or can become one. Therefore, the
only way to cover it is using the hyperedge connected to it.
(iv) ϵ-removable hyperedge: removed because they are or
can become a leaf hyperedge. In such a case, all except one
vertex contained in it have been removed as β-removable
vertices. (See Supplemental Material [21], Fig. S2, for
illustrations of those rules.) Let α (or β) denote the
probability that a random neighboring vertex or hyperedge
h in a hypergraph H is α removable (or β removable) in
Hnh. Let δ (or ϵ) denote the probability that a random
neighbor of a random vertex v in a hypergraph H is δ
removable (or ϵ removable) in Hnv. The only way for a
vertex (or hyperedge) to be α (or ϵ) removable is to have
degree (or cardinality) one, or that all but one of the
hyperedges (or nodes) that contains (or are contained by) it
are removed as ϵ (or β) removable hyperedges (or nodes).
By contrast, a vertex (or hyperedge) is β (or δ) removable if
it contains (or are contained by) at least one δ (or α)
removable hyperedges (or nodes). Hence, we can derive a
set of self-consistent equations (see Supplemental Material
[21], Sec. II, for detailed derivations and schematic
diagrams):

α ¼
X∞

k¼1

QnðkÞϵk−1; ð1Þ

1 − β ¼
X∞

k¼1

QnðkÞð1 − δÞk−1; ð2Þ

1 − δ ¼
X∞

r¼1

QhðrÞð1 − αÞr−1; ð3Þ

ϵ ¼
X∞

r¼1

QhðrÞβr−1: ð4Þ

Here QnðkÞ [QhðrÞ] is the excess degree (cardinality)
distribution. The fraction of vertices in hcore (vertices
incident to the hyperedges in hcore), denoted as svh, is
given by

svh ¼
X∞

k¼2

PnðkÞ
Xk

l¼2

�
k
l

�
ð1 − δ − ϵÞlϵk−l; ð5Þ

where PnðkÞ [PhðrÞ] is the degree (cardinality) distribution.
(See Supplemental Material [21], Sec. III B for the formula
of the fraction of hyperedges in hcore, denoted as shh. The
comparison between simulations and analytical results are
shown in Supplemental Material [21], Sec. IV. For hyper-
graphs with Poisson vertex degree distribution and different
hyperedge cardinality distributions, we find that the hcore
emerges as a continuous phase transition [Figs. 2(a)
and 2(b)], displaying the following scaling behavior:

svh ∝ ðc − c�Þζ1 ; ð6Þ

with critical exponent ζ1 ¼ 1 (see Supplemental Material
[21] Sec. III E for details). We emphasize that this scaling
behavior only represents the asymptotic behavior of the
phase transition as c − c� → 0þ. Here, c≡P∞

k¼0 kPðkÞ is
the mean degree of the network. The relation between the
critical mean degree c� (percolation threshold) and the
hyperedge mean cardinality d is represented in Fig. 3.
Similarly, the vcore percolation (associated with the MVC

problem) can also be analytically studied for random
hypergraphs. In this case, the equations on α and β are
the same as the hcore percolation case, but for hyperedges
we derive the following self-consistent equations:

δ̃ ¼
X∞

r¼1

QhðrÞαr−1; ð7Þ

(a) (b)

(c) (d)

FIG. 2. The relative size of the core size hypergraphs with
Poisson vertex degree distributions, (a),(b) svh. (c),(d) s

v
v. In (a)

and (c) we consider d-uniform hypergraphs, meaning that all
hyperedge have the same cardinality d. In (b) and (d) we consider
that the cardinality of the hyperedges follows a Poisson distri-
bution with average cardinality d.
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1 − ϵ̃ ¼
X∞

r¼1

QhðrÞð1 − βÞr−1: ð8Þ

The vcore consists of those vertices connected to at least two
nonremovable hyperedges. Hence, the fraction of vertices
in vcore is given by

svv ¼
X∞

k¼2

PnðkÞ
Xk

l¼2

�
k
l

�
ð1 − δ̃ − ϵ̃Þlϵ̃k−l: ð9Þ

See Supplemental Material [21] Sec. III B for the formula
of the fraction of hyperedges in vcore, shh. For hypergraphs
with Poisson vertex degree distribution and different
hyperedge cardinality distributions, we find that the vcore
emerges as a continuous phase transition [see Figs. 2(c),
2(d)], displaying the following scaling behavior:

svv ∼ ðc − c�Þζ2 ; ð10Þ

with critical exponent ζ2 ¼ 1 (see Supplemental Material
[21], Sec. III D for details). Figure 2(d) shows that for
a Poisson-Poisson hypergraph svv starts to decrease for
large c. This nonmonotonic behavior is due to the presence
of hyperedges with cardinality 1 in the hypergraph
(see Supplemental Material [21], Sec. IV for detailed
explanations).
Phase diagrams of the hcore and vcore percolations on

hypergraphs with Poisson vertex degree distributions are
shown in Fig. 3. Note that the phase diagram of vcore
percolation is equal to that of hcore percolation if we
interchanged the mean cardinality d with the mean degree
c. This is true because the vcore of a hypergraph is the hcore
of the dual hypergraph.

We also apply the generalized GLR procedure to
compute the hcore and vcore for several real-world hyper-
graphs: (i) APS consists of articles published in all the
American Physical Society journals from 1893 to 2010
[36], where individual authors and their joint articles are
considered as vertices and hyperedges, respectively.
(ii) DGT consists of drugs (hyperedges) and their target
genes (vertices) as listed in the DrugBank [37]. (iii) GMN
consists of reactions (hyperedges) and the involved metab-
olites (vertices) in the genome-scale metabolic network of
E. coli obtained from the BiGG database [38]. We find that
for GMN, hcore contains 3.4% of hyperedges; while vcore
contains less than 0.2% of vertices. For the other two
hypergraphs (APS and DGT), both hcore and vcore contains
less than 0.2% of hyperedges or vertices [Fig. 4(a)]. We
also compare the size of each core with that of two null
models of the real-world hypergraphs. The first null model
(random1) corresponds to an ensemble of random hyper-
graphs with the same degree and cardinality sequences as a
real hypergraph. The expected core sizes of this null model
can be analytically calculated from Eqs. (1)–(5) and (7)–(9)
based on the degree and cardinality sequences of the real
hypergraphs. The second null model (random2) corre-
sponds to an ensemble of random hypergraphs with
Poisson degree and cardinality distributions (with the same
mean degree and mean cardinality as those of a real
hypergraph). The expected core sizes of this null model
can again be analytically calculated from Eqs. (1)–(5) and
(7)–(9) based on the Poisson degree and cardinality
distributions. Note that for random1, the size of the core
is always zero [blue points in Fig. 4(a)]; while for random2,
the size of the core is between 30% and 100%, much bigger
than that of the real hypergraph. These results suggest that
the degree and cardinality distributions are main factors that
explain the small cores of these real-world hypergraphs.
Because hcore and vcore of those real-world hypergraphs are

(a) (b)

FIG. 3. Phase diagram of the hcore and vcore percolations on
hypergraphs with Poisson vertex degree distributions. The black
dots and black line represent the phase boundary of d-uniform
hypergraphs and hypergraphs with Poisson hyperedge cardinality
distribution, respectively. (a) hcore. Note that, for the d-uniform
hypergraph (d > 1) with Poisson vertex degree distribution, the
critical mean degree (i.e., c� of the vcore percolation) can be
simply related to d as c� ¼ e=ðd − 1Þ, where e ¼ 2.71828 � � �
[see (a) black dots, and Supplemental Material [21] Sec. III C for
details]. This result was previously found in Ref. [11]. (b) vcore.

MHC MVC MHC MVC

(a) (b)

FIG. 4. (a) Fraction of hyperedges shh (or vertices s
v
v) associated

with the MHC (MVC) problem for three real-world hypergraphs:
APS, DGT, and GMN; and their respective null models computed
from Eqs. (5) and (9). This set represents those hyperedges
(vertices) that cannot be covered optimally using our generalized
GLR procedure. (b) Fraction of vertices nvh (hyperedges nhv)
necessary to cover all the hyperedges (vertices) for the three
hypergraphs.
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really small, the MHC and MVC problems are effectively
solvable. Indeed, as shown in Fig. 4(b), the upper and lower
bound of the fraction of vertices (hyperedges) nvh (nvv) that
are necessary to cover all the vertices (hyperedges) are very
close to each other.
It turns out that our method can also be used to solve

another classical NP-hard combinatorial problem: finding
the minimum dominating set (MDS) for graphs. The MDS
of a graph is the smallest set of vertices that needs to be
occupied so that all unoccupied vertices are adjacent to at
least one occupied vertex [39]. Our basic idea is as follows.
We consider a hypergraph that has the same set of vertices
as the original graph, and one hyperedge i contains all
vertices adjacent to a vertex vi (including vi itself). Solving
the MHC problem on this hypergraph is then equivalent to
solve the MDS problem of the original graph. Our method
offers a much more general approach than the greedy
algorithm introduced in Ref. [40]. Indeed, the two leaf-
removal rules introduced in Ref. [40] can be considered
as special cases of our generalized GLR rules (see
Supplemental Material [21], Sec. III A for details). In
Fig. 5, we show the size of the cores associated with the
dominating set for the eleven real-world networks analyzed
in Ref. [40]. For most of those networks, our method shows
a considerable improvement over the previous method.
For some of the networks, our method actually finds no
core left.
In physics it is common that a more abstract or general

approach actually makes certain complicated problems
easier to solve. This is often not true in social systems,
biological systems, or complex systems in general. Our
results suggest that generalizing graph to hypergraphs is
one of the few cases where a small generalization makes a
very hard problem easier to solve. Indeed, we show that our
generalized GLR procedure and the corresponding hyper-
graph cores can help us solve various NP-hard covering
problems in a systematic and universal way. If we aim to
find a simple solution for complex problems, this is really

an exciting result, indicating that hypergraphs might be
the right way to represent complex networked systems.
Our results open a new set of tools to analyze complex
networked systems. It also raises a very important question:
why do hypergraph cores of real systems tend to be small or
absent? We anticipate our work will trigger more research
activities in addressing this intriguing question.
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