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We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper
plate at a constant velocity. Two distinct scenarios result from such a tensile test: (i) stable flows during
which the gel undergoes a tensile deformation without yielding, and (ii) unstable flows characterized by the
radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy
input, independent of the gel’s macroscopic yield stress. This implies a local fluidization of the gel at the
tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the
characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative
criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding in agreement
with the delayed failure framework.
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The displacement of a more viscous fluid by a less
viscous one in a confined geometry can induce the
formation of complex patterns [1–3]. Even in the simplest
case of two Newtonian fluids, this viscous fingering
instability keeps yielding new discoveries [4–10]. When
the displaced fluid is replaced with a non-Newtonian one,
the finger growth dynamics can be significantly altered
[11–18]. For instance, in the displacement of a viscoelastic
fluid by a Newtonian one, a transition from viscous
fingering to fracture occurs above a critical Deborah
number, driven by the release of elastic stresses [19–24].
While a consensus has been reached for the mechanism
responsible for this transition in viscoelastic fluids with a
finite relaxation timescale, we are far from a comprehensive
description of fingering instabilities in another class of
complex materials, yield stress fluids, which exhibit a
solidlike behavior at rest and a solid-to-liquid transition
beyond a critical stress σc [25–27]. In dense foams and
emulsions displaced by air, for example, the pattern
morphology associated with fingering instabilities is
strongly rate dependent [28,29]. In tensile tests of dense
microgels, where the samples are sandwiched between two
parallel plates that get separated at a constant velocity, the
yield stress can suppress the instability [30]. The transition
between stable and unstable displacement currently lacks
a theoretical explanation [30,31]. Moreover, the most
unstable wavelength of the pattern has been alternatively
reported as being set by the yield stress, or being inde-
pendent of the yield stress [29,32,33], which calls for
further experimental investigations.
In this Letter, we report a comprehensive description of

both the criterion for stabilization and the characteristics of

the most unstable wavelength for a colloidal gel displaced
by air. We show that the onset of the viscous fingering
instability occurs at a critical energy input that is indepen-
dent of the gel’s yield stress, implying that the mechanism
inducing unstable growth is determined locally at the par-
ticle scale. Remarkably, the most unstable wavelength λc
obeys the scaling of a Newtonian fluid, which indicates
a complete fluidization of the gel at the locus of finger
growth. This observation, in agreement with a local
yielding criterion, is further confirmed by the power-law
scaling of the normal force relaxation occurring during the
tensile test. Our results provide a comprehensive frame-
work for fingering instabilities in colloidal gels based on a
mechanism that is specific to attractive systems, which
suggests that there will not be a universal framework
accounting for viscous fingering instabilities in all yield
stress fluids.
The colloidal gel consists of carbon black particles

(Vulcan XC72R, Cabot) of typical diameter a ¼ 0.5 μm
suspended at weight fractions ranging from 4% to
10% wt. in light mineral oil (Sigma Aldrich; viscosity
ηs ¼ 20 mPa s, density ρs ¼ 0.838 g=ml). Due to attractive
van der Waals forces [34,35], carbon black particles form a
space-spanning gel network of fractal dimension df ≃ 2.2,
whose linear viscoelastic properties are characterized by
a frequency-independent elastic response [36–39]. Under
external stresses lower than the yield stress σc, the gel
behaves as a solid. For σ > σc, the gel flows. This shear-
induced yielding transition is time dependent, spatially
heterogeneous and characterized by activated dynamics
[38–42]. Here, we place a carbon black gel between a stain-
less steel parallel-plate geometry of radius R ¼ 20 mm,
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whose upper plate is connected to a stress-controlled
rheometer (DHR-3, TA Instruments). The temperature of
the lower plate is fixed to 25 °C by Peltier elements. To
account for the sensitivity of carbon black gels on shear
history [43–46], the sample is fully fluidized prior to each
test by applying a large shear stress σ ¼ 100 Pa for 30 s.
The stress is subsequently swept down to σ ¼ 0 Pa at a rate
of 1 Pa=s, while the gel reforms. This protocol yields a
reproducible initial state [44]. The resulting viscoelastic
moduli G0

0 and G00
0 of the gel are determined during 1 min

by small amplitude oscillations (strain amplitude γ ¼ 0.1%,
frequency f ¼ 1 Hz) (Fig. S1 in Supplemental Material
[47]). We then perform a tensile test at a constant lift
velocity vl during which we record the normal force FN .
The plate separation yields a roughly symmetric pattern on
both plates, which is photographed.
Two main types of patterns occur in the tensile tests for a

8% wt. carbon black gel, depending on the lift velocity vl
and the initial gap thickness h0: (i) unstable patterns char-
acterized by highly branched structures [Figs. 1(a)–1(c)],
and (ii) stable patterns characterized by conical piles of
carbon black gel at the center of the plates [Fig. 1(d)].
Unstable patterns result from instabilities at the air-gel
interface at the periphery of the parallel plate geometry
and are observed for high lift velocities and small initial
gap thicknesses. Small perturbations here have a positive
growth rate and grow into large-scale air fingers along the
radial direction, leaving behind regions depleted in gel.
Stable patterns result from a stable displacement of the gel
under the tensile flow generated by the plate separation,
where perturbations at the interface get damped out. They
are observed for low lift velocities and large initial gap
thicknesses. Such stable patterns do not occur in Newtonian

fluids, but were reported in soft glassy materials such as
dense microgels and mortar pastes [17,30]. Our observa-
tions are summarized in a stability diagram, where we
report the radial velocity vr ¼ vlðR=2h0Þ, which is the
velocity for radial air invasion, and the initial gap thick-
ness h0 [Fig. 1(e)]. The transition from unstable to stable
displacement occurs at a critical radial velocity v�r, which
increases linearly with increasing h0. Such a scaling is
robustly observed for different concentrations of carbon
black ranging from 4% to 10% wt. (Fig. S2 in Supple-
mental Material [47]). Remarkably, the stability boundary
v�rðh0Þ shifts towards lower values of velocity for carbon
black gels with increasing particle concentration; stronger
gels exhibit unstable patterns over a larger range of vr and
h0. From our additional experiments on gels with 4%, 6%,
and 10% wt. we find v�r=h0 ∝ σ−1c , as shown in the inset of
Fig. 1(e). This scaling suggests a criterion for fingering
instabilities governed by a critical energy provided to the
material during the tensile test. Indeed, integrating Darcy’s
law to compute the pressure field between the plates, which
is in turn integrated twice over the area occupied by the
material yields the expression for the energy input: EðhÞ ∝
vrσcR3ðh30=h4Þ for plates separated by a distance h (see the
Supplemental Material [47]). Assuming that the flow is
unstable above a critical energy E� at the start of the tensile
test leads to a critical radial velocity v�r ∝ ðE�=σcÞðh0=R3Þ,
consistent with our experimental scaling.
This energy criterion is confirmed by our measured input

energies calculated from the normal force recorded during
the tensile test. Unstable patterns form above a critical
energy E�, which increases as a power law with h0, as
shown in Fig. 2. The h0 dependence accounts for the fractal
nature of the gel, which implies that the number of particles
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FIG. 1. (a)–(d) Patterns obtained at a lift velocity vl ¼ 200 μm=s for increasing initial gap thicknesses h0 ¼ 100, 300, 500, and
900 μm in tensile tests performed with a 8% wt. carbon black gel placed between two parallel plates of radius R ¼ 20 mm. (e) Stability
diagram: radial velocity vr versus initial gap thickness h0. Closed symbols denote stable conical patterns, open symbols denote unstable
fingering patterns. The data points corresponding to the four images are indicated as triangles. The red line denotes the critical velocity
v�r separating the stable from the unstable regime. Inset: v�r=h0 versus the inverse of the yield stress σ−1c for carbon black gels at 4%, 6%,
8%, and 10% wt. σc is determined as the crossover of G0 and G00 during a stress sweep from 1 to 100 Pa (frequency f ¼ 1 Hz, waiting
time of 5 s per point).
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within the gap h0 scales as ðh0=aÞdf=3 (red line in Fig. 2).
The criterion for fingering instabilities is thus a critical
local energy input per carbon black particle, which is
independent of the yield stress of the gel and the concen-
tration of particles, as shown in the inset of Fig. 2. Note
that E� is equivalent to a characteristic stress σ⋆ ≃ 10 Pa, a
value comparable with the activation stress identified in
delayed yielding experiments corresponding to the mean
elastic barrier that needs to be overcome for a gel strand to
break [40,42,48].

This scenario suggests that the gel fully yields in the
unstable regime, but not in the stable regime. This is further
evidenced by considering the evolution of the normal force
FNðhÞ during plate separation for a stable and an unstable
pattern. In both cases, FN exhibits a sharp increase up to a
maximum followed by a two-step relaxation characterized
by two power laws with respective exponents α and β, as
shown in Fig. 3(a). For the unstable pattern, the first
relaxation exhibits an exponent α ≃ 5 that is characteristic
of a purely Newtonian response [49–51]. Indeed, assum-
ing a constant viscosity η yields FNðhÞ ¼ 3πηR4h20vl=2h

5

[32,49]. The air fingers invade the gap radially into the
locally fluidized gel. The second relaxation exhibits a
power-law exponent β ≃ 2, which is characteristic of the
necking of a viscous liquid [49] and corresponds to the
extensional flow of the gel threads linking the crest of
the branched pattern formed on the upper and lower plates.
By contrast, the early growth of the stable pattern is char-

acterized by a power-law relaxation step with an exponent
α ≃ 2.5, characteristic of a yield stress fluid [31,32].
Indeed, assuming that the pressure gradient is balanced

by the yield stress σc yields FNðhÞ ¼ 2πR3h3=20 σc=3h5=2.
While being dragged towards the center of the plates, the
carbon black gel thus behaves predominantly as an elastic
soft solid. The gel may rearrange to accommodate the
extensional flow, but over timescales that are large com-
pared to the gel’s “healing timescale” denoting the refor-
mation of the network, such that G0 > G00 at all times. The
second relaxation step exhibits a power law with an
exponent β ≃ 2, as for the unstable case. Note that the
transition from the first to the second relaxation regime
occurs at a critical gap hc ≃ 2600 μm that coincides with
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FIG. 2. Energy input E associated with the separation of two
plates sandwiching a 8% wt. carbon black gel initially separated
by h0. Closed symbols denote stable patterns, open symbols
denote unstable patterns. The red line defines the critical energy
E� beyond which fingers grow. E� exhibits a power law with h0,
with an exponent df=3, where df ¼ 2.1. Inset: critical energy per
particle E�=ðh0=aÞdf=3 versus yield stress for carbon black gels at
4%, 6%, 8%, and 10% wt.
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FIG. 3. (a) Normal force FN versus gap thickness h during a tensile test (vl ¼ 200 μm=s). The two curves correspond to h0 ¼ 200 μm
resulting in viscous fingering (open symbols) and h0 ¼ 1000 μm resulting in a stable conical deposit (closed symbols). The blue lines
denote the power-law exponents of the first relaxation step: α ¼ 5 for h0 ¼ 200 μm and α ¼ 2.5 for h0 ¼ 1000 μm. The green lines
denote the power-law exponents of the second relaxation step: β ≃ 2 for both experiments. (b) Exponents α and β versus h0. With
increasing gap thickness, α transitions from a Newtonian-like response (α ¼ 5—blue line) to a yield stress dominated behavior
(α ¼ 2.5—blue line). β is roughly constant over the range of gap thickness explored (β ≃ 2—green line). (c) The relative extent Rp=R of
the pattern versus h0. Inset: definition of R and Rp. The vertical lines in (b) and (c) denote the boundary between the stable and the
unstable regime.
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reaching the final diameter of the deposit, as determined
from mass conservation arguments, further confirming that
the second relaxation step denotes the thinning of the gel
thread connecting the two cones of gel located on the lower
and upper plates.
More generally, for tensile tests performed at a constant

lift velocity, the first relaxation step of the normal force
displays a Newtonian behavior characterized by α ≃ 5 at
small h0. For increasing initial gap thicknesses approaching
the boundary to the stable regime, α decreases monoton-
ically until reaching α ≃ 2.5, the value expected for a yield
stress fluid, at the onset of stable displacement, as shown in
Fig. 3(b). Concomitantly, the pattern transitions from a
highly branched structure that extends over the entire radius
R of the plate, to an unstable pattern of reduced size Rp

within a transitional range of h0 to finally a stable conical
shape, as shown in Fig. 3(c). The second relaxation step
of the normal force displays a power-law exponent β ≃ 2
for all initial gap thicknesses, whether or not the flow is
unstable. These observations are robust and also observed
in experiments at fixed h0 performed at various lift
velocities (Fig. S3 in Supplemental Material [47]).
As a consequence of the gel’s full fluidization locally

at the tip of the fingers, the most unstable wavelength
characterizing the onset of the instability λc [52] scales as
λc ∝ h3=20 with the initial gap thickness for h0 > 200 μm,

and as λc ∝ v−1=2r with the radial velocity, as shown in
Fig. 4. These two scaling laws are in agreement with the
predictions from a linear stability analysis for a Newtonian
fluid with viscosity η and surface tension Γ [2,53]:

λc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πh30Γ
ηvlR

s

¼ πh0
ffiffiffiffiffiffiffiffiffiffiffiffi

ηvr=Γ
p ð1Þ

for plates with large aspect ratio R=h0 ≫ 1. This confirms
that the yield stress plays a negligible role in the formation
of the fingering patterns. Moreover, if we take for Γ the
surface tension of the light mineral oil Γs, we obtain
η ¼ 0.18 Pa s, which is compatible with the viscosity of
a fully fluidized carbon black gel measured at high shear
rate _γ ¼ 1000 s−1 [39,54]. Remarkably, the most unstable
wavelength saturates at a constant value λ�c ¼ 1.76�
0.10 mm for h0 < 200 μm, as shown in Fig. 4(a). Such
saturation is unexpected. We note, however, that this value
is compatible with the capillary length lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γs=ðρsgÞ
p

≃
1.8 mm of the mineral oil, which suggests that the thinnest
fingers that form during a tensile experiment are limited by
capillary effects.
In summary, we show that the presence of attractive

colloidal particles suspended in a Newtonian liquid can
suppress the viscous fingering instability. We provide the
criterion for the onset of the instability as a critical energy
input needed to break bonds between particles allowing
for the local fluidization of the gel and the invasion of
fingers. These air fingers invade the gap producing highly
branched patterns that exhibit wavelengths and normal-
force responses characteristic of Newtonian fluids. This
scenario should apply to clays and other attractive suspen-
sions, where the normal-force response associated with
unstable patterns is reported to be viscous dominated [55].
Moreover, the observation that the fingering characteristics
are set solely by the properties of the fully fluidized state of
the sample might shed light on discrepancies pointed out in
[32], where the finger width observed in hair gel solutions
is independent of their yield stress. More generally, the
local fluidization scenario described here is in line with
recent rheological work on stress-induced failure in gels
[56], suggesting that our critical energy criterion could be
relevant for predicting the outcome of delayed failure in
colloidal gels [57,58]. However, our results strongly con-
trast with experiments on jammed assemblies of soft
particles such as dense microgels for which the wavelength
of the pattern is set by the yield stress of the material [29].
Indeed, the mechanism of viscous fingering instabilities
described here is unique to yield stress fluids composed of
attractive particles at low volume fractions, and we expect
different scenarios to govern unstable growth in soft
repulsive glasses; our work indicates that one should not
look for a universal scenario describing viscous fingering in
all yield stress fluids.
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FIG. 4. Most unstable wavelength λc of the fingering patterns
versus (a) the initial gap thickness h0 and (b) the radial velocity
vr. In (a), the solid line corresponds to a power-law exponent of
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to a power-law exponent of −1=2. Data obtained with a 8% wt.
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