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Densest possible packings of identical spheroids in cylindrical confinement have been obtained through
Monte Carlo simulations. By varying the shape anisotropy of spheroids and also the cylinder-to-spheroid
size ratio, a variety of densest possible crystalline structures have been discovered, including achiral
structures with specific orientations of particles and chiral helical structures with rotating orientations
of particles. Our findings reveal a transition between confinement-induced chiral ordering and shape-
anisotropy-induced orientational ordering and would serve as a guide for the fabrication of crystalline wires
using anisotropic particles.
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Physicists and mathematicians have long been fascinated
by problems of particle packing. Dense packings of hard
particles have been widely used as models for under-
standing the structural properties of condensed matter
systems such as liquids, glasses, crystals, heterogeneous
materials, and granular media [1–4]. Of such dense-packed
systems, packings of hard spheres have been studied most
extensively thanks to their geometric simplicity and rich-
ness in thermodynamic behavior. In recent years, packings
in confinement have become a subject of immense interest,
as they are relevant to many different entities and appli-
cations such as cell morphology within epithelial tissues
[5], phyllotaxis in plants like sunflower seeds and pine
cones [6], droplet-based fabrication of microparticles [7],
and drug delivery [8], as well as a number of self-assembled
systems in cylindrical confinement [9–20].
Previous experimental [9–20] and computational [15,

21–28] studies showed that the densest possible packings
of identical hard spheres within a cylinder correspond to a
geometric frustration by the curved cylindrical surface,
resulting in distinct helical configurations (e.g., single,
double, and triple helices) at specific ranges of the diameter
ratioDbetween the cylinder and the spheres.AtD ≤ 2.71486,
all spheres are in contact with the confining cylinder, in which
case it is possible to adopt a line-slip description for the
continuous transition between different helical structures [25].
Densest possible packings in such quasi-1D confinement can
generally be referred to as columnar crystals, as they are
periodic along the axial direction of the cylinder with every
unit cell being a rotation (of twist angle α) of the previous one.

It has been found that the chirality of such columnar crystals
can lead to novel optical [19] or electrical [20] properties.
Compared to their spherical counterparts, much less

research has been conducted on the packings of anisotropic
particles in confinement. Such packings involve particle
orientations as additional degrees of freedom, and hence
they exhibit a much greater variety of self-assembled
structures [29,30]. Here we regard spheroids (ellipsoids
of revolution) as the simplest extensions of spheres to
include orientational degrees of freedom, where the shape
anisotropy of a spheroid can simply be described in terms
of its aspect ratio.
The optimal packings of a system of hard particles at

high pressures are intimately related to the thermodynamic
phases of the system [31]. For example, the Frenkel–
Mulder phase diagram of spheroids [32,33], which serves
as a basis for studies of nematic phases and isotropic-
nematic transitions [34,35], has been updated [36,37] as a
result of discoveries of densest possible crystal structures of
ellipsoids [38]. Similarly, a square-triangle crystal family
has been included in an updated phase diagram of
biaxial ellipsoids [39]. It is therefore believed that the
present study of densest possible packings of spheroids in
cylindrical confinement could lead to discoveries of novel
ordered phases.
In this Letter, we demonstrate that complex structures

with rotating or specific orientations of spheroids can be
obtained through self-assembly of spheroids in cylindrical
confinement. We report our findings on the unexplored
problem of densest possible packings of identical spheroids
in a cylinder of diameter Dc. For identical spheres packed in
a cylinder, the densest possible configurations are deter-
mined only by the diameter ratio D. But for packings of
spheroids, the densest possible configurations are also
determined by the aspect ratio of particles. Our work
provides physical insights into how confinement conditions
and particle anisotropy together determine the optimal
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packings of a system. The results would serve as a guide for
the fabrication of functional ordered structures such as
colloidal crystal wires [11] through template-based self-
assembly [17–20].
We employed the Monte Carlo (MC) method adapted

from the adaptive shrinking cell optimization scheme
[39,40] to explore densest possible packings of identical
hard spheroids confined in cylinders (see Supplemental
Material [41] for details). Let a and b ¼ c be the axis
lengths of a spheroid in general, with the conditions a ¼ b,
a > b, and a < b defined for the specific cases of a sphere,
a prolate, and an oblate, respectively. The aspect ratiosA≡
maxða; bÞ=minða; bÞ of these specific cases are given by
A ¼ 1, A ¼ a=b, and A ¼ b=a, respectively. For any
spheroid packed inside a cylinder of diameter Dc, the
inequality Dc ≥ b must be satisfied. The size ratio D≡
Dc=b ≥ 1 is therefore used as a universal parameter to
describe the effect of cylindrical confinement. Our inves-
tigation focused on prolates within A ∈ ð1; 3� and oblates
within A ∈ ð1; 1.2� for D ∈ ð1; 2Þ. The chosen parameter
range of D corresponds to the existence of three densest
possible structures of identical spheres, i.e., zigzag, single
helix, and double helix, appearing sequentially for increas-
ing D with structural transitions at D ¼ 1þ ffiffiffi

3
p

=2 and 1þ
4

ffiffiffi
3

p
=7 [22,43]. Within the chosen ranges ofA, the densest

possible structures could be obtained within reasonable
computational times, and the number of densest possible
structures discovered in the oblate regime is comparable to
that in the prolate regime. For each pair of parameter values
fA;Dg, we generated dense packings of N ¼ 1 to N ¼ 24
spheroids via MC simulations. Possible packings obtained
from simulated MC compressions were then used as a
guide for constructing corresponding crystal structures,
where a sequential deposition approach [23,26,44] was
adopted. By varying both parameters A and D, we
observed a transition between chiral ordering induced by
the cylindrical confinement and orientational ordering
induced by the shape anisotropy of particles.
Seven types of densest possible columnar crystals—

namely, single helix, double helix, triple helix, unidirectional
zigzag (uni-zigzag), bi-directional crystal (bi-crystal), achiral
doublets [22], and achiral triplets [22]—have been discov-
ered via MC simulations (see Fig. 1). The orientation of each
spheroid, as depicted by an arrow in Fig. 1, is the vector n⃗
defined in Fig. 2(a). The single-helix structure is further
classified into two subtypes: single helix þ and single
helix −. Let the particles be indexed in ascending order
of their vertical positions and be positioned in a right-handed
manner along the positive direction of the Z axis. A single
helix with rotating orientations of particles is classified as a
“þ” (“−”) subtype if ðr⃗i × p⃗iÞ · ẑ > 0 (< 0), where p⃗i is the
projected direction of spheroid i and r⃗i denotes the vector
from the center of the projected cylinder to the particle center
[see Fig. 2(b)]. For each spheroid, there exists only one
possible direction of p⃗i except for the θ ¼ 90° case because

the polar angle θ is defined only for the range of [0, 90°].
This classification for the single-helix structure takes into
account both the positional and the orientational order of
the particles.
Figure 3(a) shows a map of densest possible structures

with 12 distinct regions, with three of them spanning the
regimes of oblates and prolates. For the other nine regions,
five of them are located in the oblate regime, and four are
located in the prolate regime. The oblate regime involves
six of the seven columnar structures described above, while
the prolate regime involves only four. Although the chosen
range of A for oblates is much smaller than that for
prolates, the oblate regime already displays a greater
number of distinct regions and a greater structural variety
than the prolate regime. Figure 3(b) displays the packing
densities of the densest possible structures shown inFig. 3(a).
At boundaries between different structures, the packing
density varies continuously but in a nonsmooth manner,
except for the smooth variation at each single-to-double-
helix transition. The highdegree of oblate-prolate asymmetry
in both Figs. 3(a) and 3(b) arises from the difference in
geometry between prolates (Dc=a ¼ D=A < D) and oblates
(Dc=a ¼ DA > D) with respect to the confining cylinder.
Such asymmetry is expected to exist for the corresponding
diagram of thermodynamic phases, as crystal structures of
maximum densities should all be included in the phase
diagram [36,37]. This is in contrast to cases of bulk packings,
where the maximal achievable density at any given aspect

FIG. 1. Seven types of crystal structures discovered through
MC simulations. (a) single helix, (b) double helix, (c) triple helix,
(d) uni-zigzag, (e) bi-crystal, (f) achiral doublets, and (g) achiral
triplets with one, two, three, two, four, two, and three particles in
their unit cells, respectively.

FIG. 2. (a) The orientation of a prolate (an oblate) is defined as
the direction n⃗ of the longest (shortest) axis, with θ ∈ ½0; 90°�
defined as the polar angle of the particle and ψ ∈ ½0; 360°� as the
azimuthal angle between the projection p⃗ and the X axis.
(b) Configurations of the two subtypes of single helices, “þ”
(left) and “−” (right).
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ratio is the same for both oblates and prolates [38] andwhere
the corresponding phase diagram is practically oblate-prolate
symmetric [36,37].
For a spheroid, the polar angle θ and the azimuthal angle

ψ are used to characterize the orientation of the particle, as
illustrated in Fig. 2(a). The packing density ϕ of a single
helix at given values of A and D is only a function of the
polar angle θ and the twist angle α. The densest possible
single-helix structure was obtained through a binary search
of θ and α. Figure 4(a) shows the packing density of
confined prolates as a function of θ for various values ofA,
where for each value of θ the packing density has already
been maximized with respect to the twist angle α. Similar
results have been obtained for the packings of oblates. At
θ ¼ 0°, where all spheroids are aligned along the cylinder’s

axis, all four cases have the same lowest packing density
because the dense-packed structure of each case is a simple
affine transformation of the densest possible single-helix
structure for sphere packing. The densest possible single-
helix structures of spheroids appear at some nonzero values
of θ, indicating that the system’s density is maximized via
the particles’ rotational degrees of freedom.
Let Δψ i;iþ1 ¼ ψ i − ψ iþ1 be the azimuthal angle differ-

ence between two successive particles. For the double-helix
structure, we have

Δψ i;iþ1 ¼ Δψ iþ2;iþ3 ≠ Δψ iþ1;iþ2; ð1Þ

where the (iþ 2)th and (iþ 3)th particles are replicas of
the ith and (iþ 1)th particles in the subsequent unit cell,
respectively. At each pair of given polar angles θi and θiþ1,
the packing density is maximized with respect to the
azimuthal angle differences Δψ i;iþ1 and Δψ iþ1;iþ2. The
packing density was then computed as a function of θi and
θiþ1, as shown in Fig. 4(b). The maximum packing density
appears at a point of θi ¼ θiþ1 as the plot surface is
symmetric with respect to θi and θiþ1. Hence, any pair
of successive spheroids in the densest possible double helix
always share the same polar angle θ ¼ θi ¼ θiþ1. Plots of
the packing density as a function of θ are similar to plots for
the single-helix structure with a single peak appearing at
θ ∈ ½0; 90°� as shown in the inset of Fig. 4(b).
The achiral uni-zigzag crystal has a unit cell that contains

two spheroids aligned in the same direction. The twist angle
α between successive unit cells is zero, and the spheroid
centers are arranged in the manner of a planar-zigzag
structure. For prolates (see Supplemental Material [41] for
a discussion of oblates), consider the critical aspect ratio

Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 56D2 þ 16D4

pp

2
ffiffiffi
2

p ð2Þ

for a prolate at D > 1þ ffiffiffi
3

p
=2. At A < Ap, the packing

density of the densest possible single-helix structure is
higher than that of any uni-zigzag structure, so that only
uni-zigzags at A ≥ Ap could be considered as candidates of
densest possible structures. Figure 4(c) shows the packing
density ϕ as a piecewise function of θ with a transition point
at θc. Each prolate of a unit cell is in contact with its
counterparts in adjacent unit cells only at θ ≤ θc but not at
θ > θc. The maximum packing density appears at θ ¼ θc if
D∈ ½ ffiffiffiffiffiffiffiffi

7=2
p

;2Þ, while for cases of D ∈ ð1þ ffiffiffi
3

p
=2;

ffiffiffiffiffiffiffiffi
7=2

p Þ,
the maximum density occurs at a polar angle of θm (θm > θc,
see Supplemental Material [41]). AtD ∈ ð1; 1þ ffiffiffi

3
p

=2�, the
uni-zigzag structure of prolates populates the whole range of
A. At A ≤

ffiffiffiffi
D

p
, each prolate with θ ¼ 90° in the cell is in

contact with the cylindrical wall, with one end of the
particle’s short axis being the point of contact. This structure
can be obtained by simply stretching confined spheres

FIG. 4. The packing density ϕ of confined prolates as a function
of θ for (a) the single helix, (b) the double helix, (c) the
uni-zigzag, and (d) the bi-crystal at various values of A and
D. The maximum point of each curve is marked with a cross.

FIG. 3. (a) Twelve regions from the eight types/subtypes of
densest possible crystal structures: single helix þ (1), single
helix − (2), double helix (3), triple helix (4), uni-zigzag (5),
bi-crystal (6), achiral doublets (7), and achiral triplets (8), where
the uni-zigzag region extends towards D ¼ 1 for the whole range
ofA. The enlarged region consists of a double-helix region in the
vicinity of D ¼ 2. (b) Packing densities of densest possible
structures as a function of A and D.
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along the direction perpendicular to the zigzag plane. The
picture atD ∈ ð1; 1þ ffiffiffi

3
p

=2� andA >
ffiffiffiffi
D

p
is similar to that

at D ∈ ð1þ ffiffiffi
3

p
=2;

ffiffiffiffiffiffiffiffi
7=2

p Þ and A ≥ Ap (see Supplemental
Material [41] for analytic expressions of the packing
density). It follows that the packing densities of the densest
possible uni-zigzag structures atA ≥

ffiffiffi
2

p
are independent of

A and take on a constant value at any given value of D. The
reason is that any increase in the packing density due to an
increase in A is counteracted by a decrease in the packing
density due to an increase in the height of the unit cell.
The achiral bi-crystal (twist angle α ¼ 0) has a unit cell

that consists of two pairs of prolates, with a unique
orientation for each pair. The prolates in each of such
pairs follow the same arrangement as that of two successive
particles in the uni-zigzag structure. Each pair of prolates is
a rotated mirror image of its neighboring pairs, with the XY
plane being the plane of reflection and the Z axis being the
axis of rotation. It follows that all particles in this crystal
structure share the same polar angle θ, where, at θ ¼ 0°, the
structure is a simple affine transformation along the Z axis
such that the packing density at any given value of D is
the same for all values of A [see Fig. 4(d)]. On the other
hand, a densest possible structure is not necessarily a
structure with the maximum number of contacts. As shown
in Fig. 4(d), the densest possible structure exhibits the
maximum number of contacts at A ¼ 1.5, 1.6, and 1.7 but
not at A ¼ 1.4.
For all the seven structures discovered, the spheroids

within any densest possible structure are all in contact with
the cylindrical wall. At any given polar angle θ, the centers
of the cylinder-touching spheroids are located at shortest
distances from the cylindrical boundary such that they all
lie on the same inner cylindrical surface. This applies also
to the particular case of sphere packing where, in the
absence of shape anisotropy of particles, any cylinder-
touching sphere automatically has its center located closest
to the cylindrical boundary. For all other structures except
the triple-helix structure, all particles within any densest
possible structure share the same value of θ. For the triple-
helix structure, there are a total of three oblates in a unit
cell, with at least two of them sharing the same value of θ.
Any transition from one type of densest possible crystal

to another is described as either structurally continuous or
discontinuous. In the continuous case, the two types of
crystals at the transition point are structurally the same. In
the discontinuous case, the transition point corresponds to a
packing density shared by two different structures. With
reference to Fig. 3(a), the continuous single helix to uni-
zigzag transitions at A ∈ ½ð1þ ffiffiffi

3
p Þ=2; 1.636Þ and D ∈

ð1þ ffiffiffi
3

p
=2; 1.968Þ can be understood in terms of a tran-

sition between two types of ordering. Figure 5 displays
the polar angle θ of densest possible packings of prolates as
a function of the aspect ratio A for five different values
of D, where the isotropic limit A → 1 corresponds to

helical packings of spheres. For each curve, there exist two
critical values of A, denoted as Ac and Ap, respectively,
with each critical value corresponding to a discontinuity in
the first derivative of the curve. At A ≤ Ac, the densest
possible structure is a single helix with only a single contact
point between each prolate and the cylindrical wall. At
Ac < A < Ap, the densest possible structure is still a single
helix but there exist two contact points between each prolate
and the cylinder. At A ≥ Ap, the densest possible structure
becomes a uni-zigzag with the same orientation for all
prolates. This represents a transition from chiral ordering
with a spatial rotation of particle orientations to orientational
ordering with a uniform orientation shared by all particles. In
the former case, the cylinder-touching prolates are packed in
a way that their orientations rotate about the Z axis of the
cylinder. In the latter case, the particles are elongated to an
extent that, within the cylindrical confinement, their ori-
entations are constrained to a single direction only.
The discovery of seven distinct structures in a relatively

narrow regime of particle anisotropy suggests that these
structures are just the tip of an iceberg, with many more
awaiting to be discovered. Future work should include
(i) an extension of the map of densest possible structures to
wider ranges of A and D, (ii) a study of the mechanism of
continuous transitions between single- and double-helix
structures, (iii) a study of the phase diagram of cylindrically
confined spheroids at finite pressures, and (iv) an applica-
tion of the present results to synthesize colloidal crystal
wires [11] of spheroidal particles [45,46].
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FIG. 5. Plot of the polar angle θ of densest possible structures of
prolates as a function of A. For each curve, the single helix and
the uni-zigzag correspond respectively to the regimes A < Ap
and A ≥ Ap. The critical values Ac and Ap are marked with
circles and crosses, respectively.
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