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Microscopic symmetries impose strong constraints on the elasticity of a crystalline solid. In addition to
the usual spatial symmetries captured by the tensorial character of the elastic tensor, hidden nonspatial
symmetries can occur microscopically in special classes of mechanical structures. Examples of such
nonspatial symmetries occur in families of mechanical metamaterials where a duality transformation relates
pairs of different configurations. We show on general grounds how the existence of nonspatial symmetries
further constrains the elastic tensor, reducing the number of independent moduli. In systems exhibiting a
duality transformation, the resulting constraints on the number of moduli are particularly stringent at the
self-dual point but persist even away from it, in a way reminiscent of critical phenomena.
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Classical elasticity describes how rigid objects respond
to deformations [1–5]. New facets of this time-honored
subject continue to emerge in often unexpected guises and
contexts. Recent examples range from quantum elasticity
[6–8] and fractons [9–11] to nonorientable elasticity [12],
the odd elasticity of active solids [13], and topological
elasticity [14–26].
The very existence of rigid objects would seem rather

mysterious if we were not so used to them in daily life: it is
a consequence of the spontaneous breaking of translational
invariance that occurs when a fluid condenses into a solid
[27]. This spontaneously broken symmetry guarantees the
existence of excitations with arbitrarily low energies called
Nambu-Goldstone modes [5,28–31]. In mechanics, the
Goldstone modes are familiar objects: phonons of arbi-
trarily large wavelength [32,33]. Elasticity can be viewed as
the effective field theory of such Goldstone modes: a
continuum description that ignores irrelevant microscopic
details and instead focuses on the behavior at large scales
relevant to our direct interactions with elastic bodies.
The coarse-graining procedure that goes from a micro-

scopic description to a continuum elastic theory should
discard irrelevant details, but must crucially preserve
symmetries [34,35]. The spatial symmetries of a crystal
can be gathered in a space group, containing all spatial
transformations that leave the crystal invariant [36,37]. The
space group of a crystal puts strong constraints on its
elasticity, e.g., on the number of independent moduli
[2,38,39]. For instance, the elasticity of a two-dimensional
crystal with triangular symmetry is isotropic (i.e., it is the
same for all orientations) and, as a consequence, can
display at most two independent elastic moduli.
In addition to spatial symmetries, additional nonspatial

symmetries can occur microscopically. A symmetry is
simply a transformation of the system that leaves it
invariant. Symbolically, we can write TðSÞ ¼ S, where

S represents the system and T the symmetry transforma-
tion. Spatial transformations such as rotations or trans-
lations can certainly be symmetries, but they do not exhaust
all the possibilities. Recent studies revealed that hidden
nonspatial symmetries can emerge, for instance, in families
of mechanical metamaterials where a duality trans-
formation relates pairs of distinct configurations [40].
Symbolically, two dual systems S1 and S2 related by the
duality transformation T satisfy S2 ¼ TðS1Þ and S1 ¼
TðS2Þ. The duality transformation has no reason to be a
spatial transformation. In self-dual systems (mapped onto
themselves by the duality) the duality transformation can
then become an additional hidden symmetry distinct from
spatial ones.
In this Letter, we seek to determine the consequences of

these additional constraints on the linear elasticity of a
material. More precisely, we consider the following ques-
tion: how do microscopic symmetries affect the coarse-
grained tensor of elastic moduli? Formally, we will deter-
mine the relation between the elastic tensors cijkl and c̃ijkl
of two systems S and S̃ ¼ TðSÞ, respectively described by
the momentum-space force-constant matrix SðqÞ and the
transformed one S̃ðqÞ ¼ UðqÞSðO · qÞUðqÞ−1. Here, SðqÞ
relates the microscopic forces and displacements, while
UðqÞ and O define the transformation (see next section
for precise definitions). For standard spatial symmetries,
the answer is simply contained in the fact that cijkl must
transform as a tensor. Our analysis goes beyond this simple
case and allows us to analyze the effect of additional hidden
(nonspatial) symmetries of the force-constant matrix,
which can result in even stronger constraints. In addition,
it applies to the case of dualities whereby the force-constant
matrices of two different systems are related to each other
by a nontrivial transformation.
We apply our general formulas to the example of twisted

kagome lattices (see Fig. 1), a family of two-dimensional
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crystals exhibiting a duality with a self-dual point where a
nonspatial symmetry emerges [40]. When all point group
symmetries are lifted, six independent elastic moduli are
expected in the continuum description of such systems. Yet,
the self-dual twisted kagome lattices have isotropic elas-
ticity with only one elastic modulus, despite not having any
microscopic symmetry beyond Bravais lattice translations.
Most strikingly, the elastic tensor is also constrained away
from the self-dual point, reducing the number of elastic
moduli to three. Our theory explains these counterintuitive
properties and casts them in a general formalism applicable
beyond this concrete example.
Linear elasticity.—Linear elasticity describes the relation

between the stress tensor σij and the displacement gradient
(or strain) tensor ϵkl, respectively, representing the long-
wavelength forces and deformations in a solid. More
precisely, the displacement tensor is ϵkl ¼ ∂ul=∂xk, where
uðxÞ represents the displacement of the point originally
located at x and now located at XðxÞ ¼ xþ uðxÞ, while the
stress tensor is defined such that its divergence is the
surface force fi ¼ ∂jσij acting on an infinitesimal patch
of material continuum. We choose to work with the
nonsymmetrized tensors to encompass extensions of elas-
ticity where the antisymmetric components are relevant
[13,41]. Hooke’s law in continuum form,

σij ¼ cijklϵkl; ð1Þ

linearly relates σij and ϵkl through the elastic tensor cijkl,
whose entries are the static elastic moduli of the solid.
Spatial symmetries put strong constraints on the material

properties of a crystal such as its elastic tensor cijkl. This is
because the elastic tensor cijkl unsurprisingly transforms as
a tensor under a spatial transformation T ∈ OðdÞ:

cijkl ↦ c̃ijkl ¼ Tii0Tjj0Tkk0Tll0ci0j0k0l0 : ð2Þ

Hence, there is only a certain number of entries in cijkl (i.e.,
of elastic moduli) that can be independent of each other,
and those are prescribed by the symmetry of the material
(we refer the reader to the Supplemental Material [41] for a
short summary). Yet, nothing guarantees that all of these
moduli must be independent, especially when additional
constraints not originating from purely spatial symmetries
exist.
Microscopically, we describe the elastic material as a set

of massive particles arranged on a d-dimensional crystal
and ruled by Newton equations M∂2

t u ¼ F, where u ¼
x − xeq are the displacements of the masses with respect to
their equilibrium positions xeq, and M is a mass matrix
describing the inertia of the particles. The forces F between
the particles are given in the harmonic approximation by
F ¼ −Su where the force-constant matrix S is essentially
the matrix of second derivatives of the potential in the
absence of prestress [56]. Hooke’s law (1) is the macro-
scopic version of the relation F ¼ −Su between forces and
displacements. Hence, the elastic tensor cijkl can, in
principle, be computed explicitly from the force-constant
matrix S, see Ref. [57] (also Refs. [58–64]).
Here, we specialize to the case of a crystal, where

particles are arranged in a spatially periodic fashion. Hence,
we can use the Bloch theorem to block diagonalize Newton
equations and to write M∂2

t uðqÞ ¼ FðqÞ ¼ −SðqÞuðqÞ,
where q is the quasimomentum vector. Because of the
original translation invariance of the system (that is
spontaneously broken), a global translation of the particles
in any direction cannot induce any restoring force. We
assume that there is no other soft mode. Hence, the kernel
of the force-constant matrix Sðq ¼ 0Þ consists of the rigid-
body translations of all the particles (i.e., the translations of

(a) (b) (c)

FIG. 1. Twisted kagome lattice. Examples of twisted kagome lattices with different twisting angles. The duality maps structures with a
twisting angle θ to ones with a twisting angle θ� ¼ 2θc − θ. The critical structure with twisting angle θc is mapped to itself: it is self-
dual. All these structures have the same space group, including the self-dual one. Here, inequivalent springs have different stiffnesses, as
represented by their thicknesses in the figure, to remove any point group symmetry. (a) Below the critical angle. (b) At the critical angle.
(c) Above the critical angle. Inset: definition of the twisting angle θ.
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the center of mass of the unit cell). Elasticity describes the
long-wavelength modes q → 0 (acoustic phonons) pro-
jected onto rigid-body translations with the constraint that
the projection of the force FðqÞ on fast modes must relax
(i.e., the projection on modes with a finite frequency at
q ¼ 0, that span the orthogonal complement of the kernel,
is zero). The result of integrating out these irrelevant modes
is in agreement with the zero temperature limit of finite-
temperature elasticity [59]. The elastic tensor can then be
obtained from the momentum-space force-constant matrix
SðqÞ near zero momentum as [13,56,57]

cijkl
ρ

¼
� ∂2S
∂qi∂qk −

∂S
∂qi ½S

−1� ∂S∂qk
�
jl

ð3Þ

where ρ is the density. (This expression is taken at
momentum q ¼ 0 and the inverse S−1 is computed in
the orthogonal complement of the kernel of the matrix.)
When all masses are equal, the force-constant matrix S can
be replaced by the more familiar dynamical matrix
D ¼ M−1=2SM−1=2.
It is convenient to decompose the stress and deformation

tensors in irreducible components. Hooke’s law (1) then
reads [13,65]

σa ¼ Kabϵb: ð4Þ

In two dimensions, for instance, the four components of
the stress (deformation) vector σa (ϵb) correspond to
compression, rotation, and two linearly independent shear
stresses (strains) (see Supplemental Material [41] for a
visual representation). More generally, a and b label
basis matrices τa that span irreducible representations of
the rotation group SOðdÞ. The elastic matrix Kab ¼
1
4

P
ijkl τ

a
ijcijklτ

b
kl contains exactly the same information

as the elastic tensor cijkl, only ordered in a different way.
Symmetries and dualities and their effect on the elastic

tensor.—We now consider a situation where a momentum-
space force-constant matrix S̃ðqÞ is related to another force-
constant matrix SðqÞ by a relation of the form

S̃ðqÞ ¼ ðUSU−1ÞðO · qÞ; ð5Þ

where U is unitary and O is orthogonal. We stress that the
matrices U and O act on different spaces: U acts on the
displacements u of the masses, while O acts on the spatial
coordinates x (or, equivalently, momenta q). This relation
describes a symmetry when we impose S̃ ¼ S, i.e., the
transformed system is identical to the original one. It also
describes situations where S̃ and S are distinct, and in
particular systems related by duality transformations [40].
The two force-constant matrices SðqÞ and S̃ðqÞ define two
elastic tensors cijkl and c̃ijkl (equivalently, two elastic
matrices Kab and K̃ab) through Eq. (3). We now proceed to
determine the relation between cijkl and c̃ijkl imposed by

Eq. (5). Using Eqs. (3) and (5), one obtains by a direct
calculation (see Supplemental Material [41])

c̃ijkl ¼ Oi0iRjj0Ok0kRll0ci0j0k0l0 ; ð6Þ

where the orthogonal matrix R is the projection of Uð0Þ on
solid-body translations [the kernel of Sð0Þ]. In terms of the
elastic matrix K in Eq. (4), the relation (6) can be cast in the
more compact form,

K̃ ¼ VKV†; ð7Þ

where

Vab ¼ 1

2
tr½τaR½τb�TO�: ð8Þ

The standard result Eq. (2) is recovered from Eq. (6) in
the case of spatial symmetries, for which R ¼ OT ≡ T.
However, this particular case does not exhaust Eq. (6) as the
relation (5) is not necessarily the representation of a spatial
symmetry, i.e., of an element of the space group of the
crystal. As such, the matrix R needs not be related to
O [66]. In the next section, we shall present a concrete
example where such hidden nonspatial symmetries occur in
elasticity.
Twisted kagome lattices.—Consider the family of

mechanical structures called twisted kagome lattices
[14,15,18,67–69]. These are two-dimensional periodic
structures composed of three particles per unit cell on a
triangular lattice, with each particle connected to four
neighbors, as represented in Fig. 1. We consider a situation
where inequivalent bonds (i.e., those not related by Bravais
lattice translations) have different spring stiffnesses ki,
i ¼ 1, 2, 3 (see Fig. 1). This family is parametrized by a
simple geometric parameter: the twisting angle θ between
two connected triangles, see the inset of Fig. 1. It was
shown in Ref. [40] that a duality relates the dynamical
matrices of the structures with θ and θ� ¼ 2θc − θ (with
θc ¼ π=4) through the relation [40]

UðkÞDðθ�;−kÞU−1ðkÞ ¼ Dðθ; kÞ; ð9Þ
where UðkÞ ¼ diagðiςy; iςye−ik·a2 ; iςyeik·a1Þ. In this expres-
sion, the matrices iςy act on the displacements ðx; yÞ of
each of the three masses in the unit cell of the crystal,
ςi are Pauli matrices, and ai ¼ ½cos (ði − 1Þ2π=3);
sin (ði − 1Þ2π=3)�T are primitive vectors of the triangular
Bravais lattice. The duality (9) typically relates different
systems, with different twisting angles, such as the
mechanical networks represented in Figs. 1(a) and 1(c).
However, there is a particular self-dual angle θc ¼ π=4
such that θ�c ¼ θc (see Fig. 1), where the duality relation
becomes an additional nonspatial symmetry of the dynami-
cal matrix.
From Eq. (9), one finds that R ¼ iςy andO ¼ −Id. Upon

substituting these results in Eq. (8), we obtain
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V ¼ ς3 ⊗ iς2; ð10Þ

where⊗ is the Kronecker product and ςi are Pauli matrices.
It is instructive to write the most general form of the elastic
matrix for a standard material (i.e., energy and angular
momentum are conserved and solid-body rotations do not
change the elastic energy). In this situation,Ka0 ¼ 0 ¼ K0b

and Kab ¼ Kba (see Ref. [13] and Supplemental Material
[41] for details), so we have

K ¼

0
BBB@

K00 0 K02 K03

0 0 0 0

K02 0 K22 K23

K03 0 K23 K33

1
CCCA: ð11Þ

The elastic matrices KðθÞ and Kðθ�Þ of two twisted
kagome lattices must indeed have the form (11). Following
the preceding analysis, the duality relation (9) implies an
additional set of constraints

VKðθÞV† ¼ Kðθ�Þ ð12Þ

with the transformation matrix V defined in Eq. (10). As a
consequence, we find that

KðθÞ ¼

0
BBBB@

0 0 0 0

0 0 0 0

0 0 K22ðθÞ K23ðθÞ
0 0 K23ðθÞ K33ðθÞ

1
CCCCA ð13Þ

with

K22ðθÞ ¼ K33ðθ�Þ; ð14aÞ

K33ðθÞ ¼ K22ðθ�Þ; ð14bÞ

K23ðθÞ ¼ −K23ðθ�Þ: ð14cÞ

In particular, the constraint VKðθcÞV† ¼ KðθcÞ at the
critical angle θc ¼ θ�c leads to K22ðθcÞ ¼ K33ðθcÞ while
K23ðθcÞ ¼ 0.
Hence, the duality relation (12) implies two striking

consequences. First, twisted kagome lattices have only
shear moduli: the coefficients K00, K02, and K03 always
vanish [see Eq. (13)]. Crucially, the duality constrains the
elastic moduli everywhere along the duality line (not only
at the self-dual point). Physically, the lack of bulk moduli is
related to the existence of a Guest-Hutchinson mechanism
[14,15,18,67,68], see in particular Ref. [14]. Second, a
stronger constraint occurs at the self-dual point where the
elastic tensor becomes isotropic and characterized by a
single shear modulus, despite no change in symmetry in the
lattice. The occurrence of an isotropic elastic tensor holds

even when all point group symmetries are lifted (i.e., the
space group is p1). A direct computation of the elastic
tensor from the dynamical matrix shown in Fig. 2, using
either Eq. (3) or the real-space equivalent [57] confirms all
our results [40].
To illustrate the effect of dualities, we consider the

spectrum of elastic waves in anisotropic twisted kagome

FIG. 2. Elastic constants for an anisotropic kagome lattices.
The elastic moduli K22, K33, and K23 ¼ K32 computed from the
microscopic description of kagome lattices according to Eq. (3)
are plotted as a function of the twisting angle θ for a generic
situation where all inequivalent springs in the unit cell have
different stiffnesses (see Fig. 1) [40]. The duality (represented by
black arrows) exchanges K22 and K33, as well as K23 and −K23.
We have set k1 ¼ k0, k1 ¼ 2k0, k3 ¼ 3k0.

FIG. 3. Effect of dualities on elastic waves in an anisotropic
kagome lattice. The dispersion relations of elastic waves in an
anisotropic kagome lattice are plotted for (a) θ ¼ 0.1π, (b) θc, and
(c) the dual angle θ� of case (a). The dispersion relations in (a)
and (c) are identical, because of the duality between the
corresponding systems. We distinguish the two acoustic branches
in (a) or (c), but not in the self-dual system (b), where they share
the same slope. We have set k1 ¼ k0, k1 ¼ 2k0, k3 ¼ 3k0, a is the
lattice constant, and ω2

0 ¼ k0=m. The x and y axes have identical
length.
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lattices. The dynamics of elastic waves is described by the
equation ρü ¼ ∇ · σ. A Fourier transform of this equation
gives ω2uiðqÞ ¼ hilðqÞulðqÞ with hilðqÞ ¼ cijklqjqk=ρ.
The dispersion relations obtained by diagonalizing the
matrix hðqÞ are plotted in Figs. 3(a)–3(c). We observe that
the dual structures with twisting angles θ and θ� [(a) and
(c)] have identical spectra. Besides, the two branches are
degenerate in the self-dual structure (b), as expected from
the form of the elastic tensor.
Conclusions.—We have shown how hidden nonspatial

symmetries (originating, for instance, from dualities)
strongly constrain the elastic moduli of a solid. Our results
suggest a general mechanism not limited to elasticity by
which microscopic dualities and nonspatial symmetries
impose constraints on generalized rigidities and response
functions. These subtle effects are not captured by an
analysis based on the spatial symmetry (i.e., the point group
or space group) of the underlying structure. They are
therefore likely to be overlooked in analyses performed
purely within macroscopic continuum theories.
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