
 

Suppressed Charge Dispersion via Resonant Tunneling in a Single-Channel Transmon
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We demonstrate strong suppression of charge dispersion in a semiconductor-based transmon qubit
across Josephson resonances associated with a quantum dot in the junction. On resonance, dispersion is
drastically reduced compared to conventional transmons with corresponding Josephson and charging
energies. We develop a model of qubit dispersion for a single-channel resonance, which is in quantitative
agreement with experimental data.
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Superconducting circuits based on nonlinear Josephson
junctions (JJs) form the basis of a broad array of coherent
quantum devices used in applications ranging from radiation
detectors to magnetometers to qubits [1,2]. An important
application is the transmon qubit, a variant of the Cooper pair
box qubit [3] where the Josephson energy EJ of the junction
exceeds the charging energy, EC ¼ e2=2C, of the shunting
capacitor with capacitance C. Designing qubits with ratio
EJ=EC considerably greater than unity exponentially sup-
presses its charge character, correspondingly reducing its
sensitivity to voltage noise and dramatically extending
coherence [4,5]. The trade-off with increasing EJ=EC is
reduced anharmonicity, which determines the minimal oper-
ation time due to leakage out of computational states [6].
The JJs used in superconducting qubits are almost

exclusively based on superconductor-insulator-supercon-
ductor tunnel junctions [7], well described by a sinusoidal
current-phase relation (CPR) [8]. More recently, gate-
voltage-tunable transmon qubits (gatemons) have been
realized using superconductor-semiconductor-supercon-
ductor (S-Sm-S) JJs, where the Sm weak link was either
a nanowire [9,10], a two-dimensional electron gas [11], or
graphene [12,13]. Such Sm weak links are typically
quasiballistic and with Andreev processes [14] across the
junction dominated by a small number of highly trans-
mitting channels [15–17]. In this regime, the CPR is no
longer sinusoidal, and anharmonicity deviates from the
usual relations and trade-offs involving EJ and EC [17].
An expected consequence of large transmission

among a few Andreev modes in the JJ is a suppression
of the quantization of island charge, which vanishes
entirely when the transmission of any mode reaches unity
[18–20]. Suppression of charge quantization in nonsuper-
conducting quantum dots has been well investigated

experimentally [21,22], including a recent detailed study
in a semiconductor quantum dot with vanishing level
spacing due to an internal normal-metal contact [23]. In
a similar fashion, charge quantization on a JJ-coupled
superconducting island is expected to be suppressed for
highly transmissive modes and vanish for unity trans-
mission of a mode [24], irrespective of the ratio EJ=EC,
though to our knowledge this has not been previously
investigated experimentally.
In this Letter, we investigate the charge dispersion in a

nanowire-based gatemon qubit that shows strong suppres-
sion compared to a conventional metallic transmon qubit,

(a)

(b)

(c)

(d)

FIG. 1. (a) Scanning electron micrograph (SEM) of the nano-
wire region of the qubit device. Two etched regions were formed
(qubit junction and FET) controlled with bottom gates VQ and
VFET. (b) SEM of the qubit region highlighted (green square) in
(a). (c) Two-tone spectroscopy measurements of the heterodyne
transmission voltage VH at values of qubit gate voltage VQ just
above complete depletion of the qubit junction and varying drive
frequency fd, yielding two resonances (Res. 1 and Res. 2) in the
qubit frequency spectrum. (d) Sketch illustrating the principle of
tunneling on and off a resonant dot level inside a Josephson
junction connected to the superconducting leads by two tunnel
barriers, characterized by tunnel rates Γ1 and Γ2.

PHYSICAL REVIEW LETTERS 124, 246803 (2020)

0031-9007=20=124(24)=246803(6) 246803-1 © 2020 American Physical Society

https://orcid.org/0000-0001-7470-4965
https://orcid.org/0000-0002-3944-4034
https://orcid.org/0000-0002-6376-7220
https://orcid.org/0000-0001-8618-8902
https://orcid.org/0000-0002-1012-7895
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.246803&domain=pdf&date_stamp=2020-06-19
https://doi.org/10.1103/PhysRevLett.124.246803
https://doi.org/10.1103/PhysRevLett.124.246803
https://doi.org/10.1103/PhysRevLett.124.246803
https://doi.org/10.1103/PhysRevLett.124.246803


when operated across resonances in the junction. As
discussed below, resonances in the semiconductor JJ
effectively bring the Andreev transmission of a single
mode close to unity. A comparison of experimental data
to a simple model describing resonant Cooper pair transport
across a single-mode junction [8,25–27] yields striking
agreement, supporting both the general feature of sup-
pressed charge quantization at large transmission and the
additional feature that a dot resonance acts to provide an
effective near-unity transmission of a single mode in a
semiconductor JJ.
Measurements were performed on a gatemon qubit based

on an InAs nanowire fully covered by 30 nm epitaxial Al
[28], as described previously [29]. Two ∼150 nm segments
of the Al shell were etched, forming gateable regions, as
shown in Fig. 1(a), one serving as the qubit junction,
controlled by gate voltage VQ, and the other as a field-effect
transistor (FET), allowing in situ dc transport, controlled by
VFET [29]. All circuit QED measurements were carried out
with the FET fully depleted (VFET ¼ −3 V), so that the
gatemon circuit consisted of one side of the qubit junction
contacted to ground and the other to the capacitor island
[Fig. 1(b)]. The island capacitance was designed to yield
EC=h ∼ 500 MHz, allowing operation at intermediate
EJ=EC ∼ 10–20 so that charge dispersion was easily
resolved.
Near the pinch-off voltage of the qubit junction

(VQ ∼ −3 V), the first visible features to appear in two-
tone spectroscopy as VQ was tuned more positive were two
narrow peaks in the qubit frequency, as shown in Fig. 1(c).
We attribute these features to resonant tunneling of
Cooper pairs through an accidental quantum dot formed
in the junction [Fig. 1(d)], a common occurrence near full
depletion [30,31]. We note that dc transport measurements
(FETopened) of the switching current revealed correspond-
ing resonances of similar width and spacing as a function of
VQ, supporting our interpretation of resonant tunneling
across the junction (see Supplemental Material [32]).
To model the junction resonance, we consider

a single spin-degenerate level at energy ϵr, weakly coupled
to the two superconducting leads via tunneling rates
Γ1 and Γ2 [Fig. 2(a)] and a Breit-Wigner form for the
transmission [33], T¼4Γ1Γ2=ðϵ2rþΓ2Þ, where Γ¼Γ1þΓ2.
Transmission is maximal on resonance, ϵr ¼ 0, where it
reaches unity for symmetric barriers, Γ1 ¼ Γ2 [Fig. 2(b)].
In the superconducting state, a pair of spin-degenerate
Andreev bound states reside in the junction at energy E,
given by [8,26]

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 − E2
p

E2Γþ ðΔ2 − E2ÞðE2 − ϵ2r − Γ2Þ
þ 4Δ2Γ1Γ2sin2ðϕ=2Þ ¼ 0; ð1Þ

where Δ is the superconducting gap and ϕ is the phase
difference across the junction [32], as plotted in Fig. 2(c).

The Andreev level spectrum consists of a spin-degen-
erate, phase-dependent bound state plus a continuum of
quasiparticle states above the gap. At ϕ ¼ 0, the bound
state energy Eð0Þ ¼ Δ̃, varies between ϵr and Δ as Γ
increases [32]. The energy gap at ϕ ¼ π is proportional to
the reflection amplitude r ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p

and thus vanishes at
perfect transmission, yielding two decoupled 4π-periodic
branches.
We model the charging-energy-induced quantum fluc-

tuations in ϕ via the Hamiltonian [34–36],

H ¼ 4ECði∂ϕ − ngÞ2 þHJ; ð2aÞ

HJ ¼ Δ̃
�

cos ðϕ=2Þ r sin ðϕ=2Þ
r sin ðϕ=2Þ − cos ðϕ=2Þ

�

; ð2bÞ

where ng is the charge induced on the island in units of 2e.
The model above was originally derived for a super-
conducting quantum point contact [35], and it is valid
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FIG. 2. (a) Sketch of the energy density of states of a super-
conductor-dot-superconductor system. The superconductors are
described by a standard BCS density of states with gapΔ. A spin-
degenerate level is located inside the JJ, detuned by ϵr from the
Fermi level (dashed line). (b) Normal state transmission through
the junction T as a function of ϵr for three different Γ for Γ1 ¼ Γ2.
Note that T ¼ 1 occurs for ϵr ¼ 0 for all Γ. (c) Numerical
solutions to Eq. (1) describing resonant tunneling for three
different ϵr [colored dots in (b)] and Γ=Δ ¼ 1. The effective
gap Δ̃ðϵrÞ ¼ Eð0Þ (arrows) and continuum at �E=Δ ¼ 1 (gray
and white region) are indicated. (d) Numerical solutions to Eq. (2)
showing the two lowest transition frequencies f01ðngÞ and
f02ðngÞ as a function of offset charge ng. The frequencies are
normalized to the 0 → 1 degeneracy transition frequency
f01ð0.25Þ ¼ f01 with dispersion amplitudes δ01 ¼ f01ð0Þ −
f01ð0.25Þ and δ02 ¼ f02ð0.25Þ − f02ð0Þ indicated (arrows).
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provided EC ≪ Δ and that the Andreev energies are well
separated from the continuum. The eigenvalues of HJ,

E ¼ �Δ̃½1 − Tsin2ðϕ=2Þ�1=2; ð3Þ

closely approximate the solutions of Eq. (1) (see
Supplemental Material [32]). We solve Eq. (2) numerically
[32] to obtain the qubit energy levels En as well as the
associated transition frequencies fnmðngÞ ¼ ½EmðngÞ −
EnðngÞ�=h [Fig. 2(d)].
A key feature of Eq. (2) is that it captures the dramatic

effect of the presence of a level crossing at ϕ ¼ π in the
Andreev spectrum. At ideal transmission (r ¼ 0), the two
minima of the Josephson energy at ϕ ¼ 0 and 2π belong to
two uncoupled branches of HJ, reflecting the fact that left-
moving Andreev states are uncoupled from right-moving
Andreev states. As a consequence, the 2π tunneling process
is forbidden, and the charge dispersion reaches a minimal
value dictated by the amplitude for 4π tunneling [37]. The
2π tunneling amplitude increases with r, since the two
Andreev branches are coupled by backscattering. For a
weakly transmitting channel, r ≫ ðEc=Δ̃Þ, it recovers to
the known value corresponding to tunneling in a cosine
potential. The remarkable flattening of the qubit energy
levels at perfect transmission is illustrated in Fig. 2(d).
Measurements of charge dispersion across resonance

1 (Res. 1) in Fig. 1(c) were carried out by finely sweeping
VQ while performing two-tone spectroscopy using a
rastered drive tone fd followed by a readout tone at fR ∼
5.3 GHz [Fig. 3(a)]. The fine sweep of VQ served two
purposes: it both tuned the junction across the resonance
and incremented the charge ng on the superconducting
island, resulting in an oscillating pattern within a resonant
envelope, appearing in the demodulated transmission
voltage VH [Fig. 3(a)]. The two counteroscillating
branches reflect fast quasiparticle poisoning of the island,
which shifts the energy spectrum in Fig. 2(d) by half a
period (1e) [5].
Qubit frequencies for both parity branches were

extracted from the raw VH data using double Lorentzian
fits for each VQ, allowing determination of the maximal
upper (fþ) and minimal lower (f−) branch frequencies. At
the charge degeneracy points, a single Lorentzian fit was
used to find f01. The charge dispersion amplitude, here
defined δ01 ¼ fþ − f01, was then extracted using an
interpolated f01 to determine fþ and f01 at corresponding
VQ, as shown in Fig. 3(b). Near the top of the resonance,
the two-photon transition frequency f02ðngÞ=2 was visible
in the spectrum and overlaps with the lower frequency
branch of the f01 transition [Fig. 3(c)]. As δ01 becomes
comparable to the linewidth here we use the observed
f02ðngÞ=2 to identify the VQ associated with charge
degeneracy and maximal dispersion amplitude.
Measurements of charge dispersion across Res. 2 were

done in a slightly different way. Rather than using VQ to

span the resonance and vary ng, for Res. 2, ng was varied by
sweeping VFET (in the depleted regime) at fixed VQ giving
roughly independent control of ϵr and ng (see Supplemental
Material [32]). The observed behavior of Res. 1 and Res. 2
was the same.
Figure 4 shows a parametric plot of dispersion δ01 as a

function of f01 for both resonances, with the original
dependence of f01 on VQ shown in the inset. As expected
for transmons in general, δ01 decreases when f01 increases
due to an increase in EJ. In the f01 ≲ 3.5 GHz range,
corresponding to the tails of the two resonances, δ01 decays
approximately exponentially as f01 is increased. However,
for the f01 ≳ 4 GHz range, near the top of the two
resonances, we observe the onset of a sharper decrease
toward vanishing δ01, strongly deviating from the expo-
nential suppression expected in standard transmon qubits.
To quantitatively compare the observed charge

dispersion across the resonances to the model (2), we first
fix Δ ¼ 190 μeV based on tunneling spectroscopy mea-
surements at VFET ¼ þ4 V, where the FET is open [29].
For simplicity, we take the tunnel barriers to be symmetric
and only allow VQ to tune ϵr. We then fit EC (the same for
both resonances) and Γ (allowed to be different for each

(a)

(b)

(c)

FIG. 3. (a) Measurement of the heterodyne transmission volt-
age VH as a function of VQ and a varying qubit drive fd across
one of two resonances (Res. 1). (Inset) Sketch of the energy
density of states to illustrate the interpretation that ϵr is varied by
VQ. (b),(c) Enlargement of the red (blue) region in (a) at the slope
(peak) of the resonance spectrum. Note the same fd scale of
0.4 GHz in both panels. Examples of maximal upper (fþ),
minimal lower (f−), and charge degeneracy (f01) frequencies are
indicated in (b) (single arrows). An example of the maximal
charge dispersion amplitude δ01 ¼ fþ − f01 is indicated (double
arrow). Interpolated f01 as a function of VQ is shown in (b) (gray
dashed line).
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resonance). Results are shown in Fig. 4, with EC=h ¼
539 MHz (comparable to the electrostatic model [38] value
512 MHz) and Γ=h ¼ 72 GHz for Res. 1, and Γ=h ¼
60 GHz for Res. 2.
Comparing δ01 to the prediction for a conventional

transmon model based on the Hamiltonian HT ¼
4ECðn − ngÞ2 − EJ cosϕ, for EC=h ¼ 539 MHz, high-
lights the suppressed dispersion observed experimentally
and in the resonance model. The conventional model agrees
with the experimental data and with the resonant level
model only at low values of f01, as expected for a
decreasing transmission coefficient (r → 1), where the
sinusoidal CPR is recovered.
When VQ is turned more positive, we no longer observed

narrow, symmetric resonances associated with resonant
tunneling. Instead, we observe a nonmonotonic spectrum
much less susceptible to changes in VQ. In this regime, we
also observe a deviation in the charge dispersion compared
to the value predicted by HT [32]. However, the suppres-
sion is not as pronounced as observed across the two
resonances. We interpret this as crossing to a regime where
the Andreev processes are no longer mediated by a resonant
level and instead is described by a few gate tunable
transmission coefficients [15–17,39], not reaching values
similarly close to unity.
We also examine charge dispersion for the two-photon

(0 → 2) transition frequencies of Res. 2. By increasing the
power and repeating the scans used to extract δ01 we both
excite the 0 → 1 and the 0 → 2 transitions. We define the
0 → 2 charge dispersion amplitude δ02 ¼ f02 − f02;−,

where f02;− and f02 are the minimal lower branch and
degeneracy frequency, respectively. This operative defini-
tion is chosen, as the upper branch of the 0 → 2 transition
interferes with the lower branch of that of 0 → 1. Results
for both δ01 and δ02=2 are shown in Fig. 5. Both theory
curves are obtained by solving Eq. (2) for the same
parameters as in Fig. 4, again showing striking agreement
between theory and experiment. We also compare the
measured δ02=2 with numerical solutions to HT , again
yielding roughly an order of magnitude deviation at
resonance [40]. Finally, we emphasize that the finite
frequency difference between the pairs of data points is
equal to half the anharmonicity α, as f02=2 − f01 ¼
1=2ðf12 − f01Þ ¼ α=2h. This illustrates that δ0i → 0 can
be achieved without α → 0 and, in principle, for much
larger α.
Minor deviations between experiment and model may be

attributed to effects of electron-electron interactions in the
quantum dot, which are not included in the model
[31,41,42] as well as fluctuations in the ratio Γ1=Γ2 as a
function of VQ.
In summary, we have observed and modeled the strong

suppression of the charge dispersion in a single-channel
transmon across a junction resonance, obtaining excellent
agreement between experiment and theory. Our results
suggest that charge dispersion can be suppressed without
the necessity of large EJ=EC ratios. Future implementation
of controlled dot structures or quantum point contact
junctions to controllably achieve transmissions near unity
may be a path to engineer superconducting qubits with
vanishing charge dispersion and large anharmonicity.

FIG. 4. Extracted maximal dispersion amplitudes (black and
orange data points) and fit results (black and orange curves) of the
0 → 1 transition for both resonances (Res. 1 and Res. 2) as a
function of qubit frequency f01. The theory curves are fits of
numerical solutions to Eq. (2) with fit parameters EC=h ¼
539 MHz and Γ=h ¼ 72ð60Þ GHz for Res. 1 (2). Numerical
δ01 (gray dashed line) for the standard transmon model with
EC=h ¼ 539 MHz. Error bars are estimated from fit errors.
(Inset) Extracted f01 as a function of VQ for Res. 1 (black)
and Res. 2 (orange).

FIG. 5. Extracted maximal dispersion amplitudes (orange and
blue data points) and fit result (orange and blue curves) of the
0 → 1 and 0 → 2 transitions of Res. 2, respectively. The theory
curves correspond to numerical solutions to Eq. (2) with EC=h ¼
539 MHz and Γ=h ¼ 60 GHz. Numerical δ01 (orange dashed
line) and δ02=2 (blue dashed line) based on HT with
EC=h ¼ 539 MHz. The frequency differences between corre-
sponding pairs of data points taken at same VQ (matching shapes)
are equal to α=2h, with one example indicated.
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Additionally, a controllable near-unity junction would allow
for deterministic tuning of the spectrum in Andreev qubits
[43,44]. Parallel experiments demonstrate similar suppres-
sion of the charge dispersion in a half-shell nanowire
transmon, including an investigation of qubit coherence
times [45].

The numerical code and data accompanying the analysis
of Figs. 4 and 5 are available online [40].
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