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Tensor network states and parton wave functions are two pivotal methods for studying quantum many-
body systems. This work connects these two subjects as we demonstrate that a variety of parton wave
functions, such as projected Fermi sea and projected fermionic or bosonic paired states, can be represented
exactly as tensor networks. The results can be compressed into matrix product states with moderate bond
dimensions so various physical quantities can be computed efficiently. For the projected Fermi sea, we
develop an excellent compression scheme with high fidelity using maximally localized Wannier orbitals.
Numerical calculations on two parton wave functions demonstrate that our method exceeds commonly
adopted Monte Carlo methods in some aspects. It produces energy and correlation function with very high
accuracy that is difficult to achieve using Monte Carlo method. The entanglement measures that were
almost impossible to compute before can also be obtained easily using our method.
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Introduction.—The complexity of quantum many-body
systems has posed considerable challenges for physicists
since the dawn of quantum mechanics. One fundamental
curse is that the Hilbert space of a composite system grows
exponentially with the number of its constituents. While
perturbative methods have been very successful in studying
weak interactions, the vast arena of strongly correlated
quantum matter remain elusive in many aspects. Analytical
and numerical progresses have been made along various
directions. The subjects of this Letter are tensor network
states [1–6] and parton wave functions [7–10], which share
the common feature of trying to encode quantum many-
body states using a moderate amount of resources.
Tensor network states are designed to capture special

quantum entanglement patterns in the low-energy eigen-
states of physical Hamiltonians. The wave functions are
expressed as contraction of tensors (i.e., multi-index
number arrays). If a system is divided into two subsystems,
the entanglement entropy of one subsystem is bounded by
the number of virtual indices on the boundary. In many
cases, the number of parameters stays constant or grows
polynomially, so the approximation is very useful. This
approach begins with the invention of the density-matrix
renormalization group (DMRG) algorithm [11] and has
produced very impressive analytical and numerical results
ever since.
The idea of parton wave functions was originally

conceived in particle physics but has also been very
successful in condensed matter physics. In this approach,
the physical particles or spins are represented using slave

particles (bosons or fermions) in certain enlarged Hilbert
spaces. It is hoped that strongly correlated physical states
can be approximated as suitable “mean field" states of the
slave particles with their unphysical components removed
by some kind of projection. While this may appear to be
ad hoc at first sight, it does provide very valuable insights
into many problems. The ground states of some exactly
solvable models, such as the Haldane-Shastry model
[12,13] and the Kitaev honeycomb model [14], can be
expressed as Gutzwiller projected parton states. In the
studies of high-Tc superconductors [15–17], fractional
quantum Hall states [18–21], and quantum spin liquids
[22–24], parton wave functions have been used extensively
as variational ansatz.
It is usually possible to deduce some properties of parton

wave functions using low-energy effective field theories
[16,24]. Nevertheless, numerical results are very much
desired for quantitative assessments. For example, finding
the optimal parameters with respect to a given Hamiltonian
requires energy minimization. Monte Carlo methods are
widely used for computing expectation values [25–30].
This is relatively simple if the target state is made of
fermionic determinants and/or Pfaffians but rather chal-
lenging if bosonic permanents are involved. The compu-
tation of entanglement entropy and entanglement spectrum
[31–35], which have been used extensively to characterize
many-body states, is still quite demanding for generic
parton wave functions [36–40].
In this Letter, we prove that generic parton wave

functions can be expressed as local tensor networks in a
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straightforward manner. The explicit representations of
projected Fermi sea and projected fermionic or bosonic
paired states correspond to sequential operations of matrix
product operators (MPO) on simple product states. These
tensor networks can be compressed into matrix product
states (MPS) and various physical quantities can be
evaluated efficiently. For the project Fermi sea, an opti-
mized basis transformation using maximally localized
Wannier orbitals is proposed, which greatly reduces the
amount of entanglement in intermediate steps and helps to
achieve high fidelity compressions. One can reach very
high precision when computing physical quantities and
directly access certain measures of quantum entanglement
using the tensor network representations of parton wave
functions. The numerical results clearly suggest that our
method has the potential to surpass conventional
Monte Carlo methods in many cases.
Tensor network representation.—The method proposed

here can be applied to any spin, bosonic, or fermionic
systems, but we shall use spin-1=2 lattice models as
illustrations [see Fig. 1(a)]. The lattice sites are labeled
by j ∈ ½1; N� and the spin operators are Saj (a ¼ x, y, z).
The Abrikosov fermion representation is Saj ¼
1
2

P
αβ c

†
jατ

a
αβcjβ, where c†jα (cjα) are fermionic creation

(annihilation) operators at j, α ¼ ↑;↓ is the spin index, and
τa are Pauli matrices. This is an overcomplete representa-
tion with unphysical states (empty and doubly occupied)
that need to be removed by the single-occupancy constraintP

α c
†
jαcjα ¼ 1. The Schwinger boson representation is

very similar, where the fermionic operators are replaced
by their bosonic counterparts.
One popular class of trial wave functions for spin models

is the projected Fermi sea

jΨi ¼ PG

YN
m¼1

d†mj0i; ð1Þ

where j0i is the vacuum, the d†m are single-particle orbitals
of the partons, PG ¼ Q

N
j¼1 Pj is a product of projectors that

impose the single-occupancy constraints on each site. In
general, the single-particle orbitals can be written as d†m ¼P

N
j¼1

P
α¼↑;↓ Am;jαc

†
jα ¼

P
2N
l¼1 Amlc

†
l with l ¼ ðj;αÞ. The

states labeled by l are placed on a one-dimensional chain
under some physically motivated guidelines [41]. This is in
sharp contrast to previous works that construct (possibly
nonlocal) tensor networks for parton wave functions [42] or
their norms [43] on the original lattice. The N × 2N matrix
Aml that parametrizes the occupied orbitals is usually
obtained by solving some “mean-field” Hamiltonians that
are quadratic in the parton operators.
The central result of this paper is that Eq. (1) has a very

natural tensor network representation. More importantly, it
can be compressed into MPS with moderate bond dimen-
sions, which allows for efficient computation of variational
energy, correlation functions, and entanglement measures.
The key observation that leads to our result is that the
single-particle orbital d†m can be converted to an MPO with
bond dimension D ¼ 2 as [41]

d†m ¼
�
0 1

��Y2N
l¼1

�
1 0

Amlc
†
l 1

���
1

0

�
: ð2Þ

One dummy column and one dummy row are appended to
ensure that all MPOs in the product have the same form. If
the dummy vectors are multiplied with their neighbors, we
recover a usual MPOwith an open boundary condition. It is
then straightforward to find the tensor network representa-
tion of Eq. (1) as depicted in Fig. 1(b): (1) apply the N
MPOs corresponding to the d†m to the fermionic vacuum;
(2) apply the projector PG to the Fermi sea with each term
Pj acting on two neighboring sites. In the same spirit,
tensor network representations of projected fermionic or
bosonic paired states can be obtained using MPOs that
create fermionic or bosonic pairs [41,44].
Compressing into MPS.—Although the representation

derived above is exact, physical quantities cannot be
computed simply. In fact, it is well known that the exact
contraction of a two-dimensional tensor network with
closed loops is exponentially difficult [2,5]. This makes
it imperative to develop an approximation scheme that
would enable actual calculations. An obvious choice is to
sequentially act the MPOs on the MPS (with fermionic
vacuum as the initial input) to generate another MPS.
However, the bond dimension of the MPS increases
exponentially with the number of MPOs, so it is impossible
to carry out the procedure for more than ∼12MPOs. To this
end, we need to truncate the MPS at intermediate steps such
that its bond dimensionD never exceeds some fixed values.
The simplest truncation method is the singular value
decomposition, where one converts the MPS into the
so-called mixed canonical form and discards small sin-
gular values [3,41]. Its efficiency is determined by the

(a) (b)

FIG. 1. (a) Schematics of parton construction for spin-1=2
lattice models. (b) Schematics of the tensor network representa-
tion of the projected Fermi sea in Eq. (1).
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entanglement properties of the target state and its error is
quantified by the norm of the discarded singular values.
If the Aml in d†m have similar magnitudes, it would

substantially modify the matrices on all lattice sites when
acting on an MPS, then the truncation is likely to introduce
considerable errors. This is often the case since d†m are
eigenmodes of parton “mean-field” Hamiltonians, where
the Aml describe spatially extended Bloch waves or stand-
ing waves. It has been found that the single-particle orbitals
and the sequence of applying MPOs can be optimized to
minimize entanglement growth [45–50]. In our case, the
maximally localized Wannier orbitals [51–55] are
adopted to facilitate the truncation. The basic idea
is to convert the wave function in Eq. (1) to jΨi ¼
PG

Q
N
r¼1 ζ

†
r j0i, where the ζ†r are linear combinations of

the d†m. The entanglement entropy grows much slower
when using the MPOs built from the ζ†r because each one of
them only causes appreciable changes (i.e., entanglement
increase) in the vicinity of a particular lattice site. This is
possible if the ζ†r are designed to mimic the maximally
localized Wannier orbitals. To be specific, the position
operator X ¼ P

N
j¼1

P
α¼↑;↓ jc

†
jαcjα is expressed as a

matrix [56]

X̃mn ¼ h0jdmXd†nj0i ð3Þ

in the subspace spanned by the d†m. Its eigenvectors are
denoted using a matrix B such that B†X̃B is diagonal. The
transformed orbital ζ†r is defined using Bmr as

ζ†r ¼
XN
m¼1

Bmrd
†
m ¼

X2N
l¼1

ðBTAÞrlc†l : ð4Þ

The parton wave function is unchanged because the ζ†r are
just linear combinations of the same set of orbitals. In many
cases, the d†m do not mix partons with different spins, so
they can be separated to two groups that are transformed
using the spin-up and spin-down position operators,
respectively. As the order of the ζ†r in jΨi does not matter,
the truncation error can be further reduced by a “left-meet-
right” strategy: alternately act the operator localized at the
left or right edge and gradually move toward the center.
Numerical results 1.—The first example that we have

investigated is the Haldane-Shastry model [12,13] with the
Hamiltonian

HHS ¼
X
p<q

π2Sp · Sq

N2sin2 π
N ðp − qÞ : ð5Þ

Its ground state for even N is a Gutzwiller projected half-
filled Fermi sea jΨHSi ¼ PG

Q
m

Q
α¼↑;↓ d

†
mαj0i, where

d†mα ¼ N−1=2 PN
j¼1 e

−iðjmÞc†jα is the creation operator in

momentum space and the occupied momenta are m ¼
ð2π=NÞs with

s ¼
�
0;�1; � � � ;�ðN

4
− 1Þ; N

4
if N mod 4 ¼ 0

0;�1; � � � ;� N−2
4

if N mod 4 ¼ 2
: ð6Þ

The ground-state energy is −π2ðN þ 5N−1Þ=24 and the
spin-spin correlation function in the ground state is [57,58]

hSp · Spþqi ¼
PN=2

a¼1
3ð−1Þq
2a−1 sin ½πN ð2a − 1Þq�
2N sin π

N q
: ð7Þ

The Haldane-Shastry parton state with N ¼ 100 has
been constructed using our method for bond dimension D
up to 5000. The comparison between the energy values in
Table I and the spin-spin correlation function in Fig. 2(a)
clearly demonstrates the success of our method. This level
of accuracy is very difficult to achieve using Monte Carlo
methods [17,24]. The evolution of the von Neumann
entanglement entropy at the center of the system during
the calculation is presented in Fig. 2(b). It is apparent that
the Wannier mode transformation and the left-meet-right
strategy are both very useful as they significantly reduce the
amount of entanglement. The Haldane-Shastry model is
difficult to study using direct DMRG method due to its
gapless nature and the long-range interaction.
Numerical results 2.—The second example that we have

investigated is a chiral spin liquid model [36] that has the
same topological order as the ν ¼ 1=2 Laughlin quantum
Hall state [59,60]. It is defined on a square lattice with Nx
andNy sites along the two directions. The spin-up and spin-
down partons are described by the Hamiltonian

HCI ¼
X
hjki;α

tjkc
†
jαckα þ

X
⟪jk⟫;α

iΔjkc
†
jαckα; ð8Þ

where hjki (⟪jk⟫) indicates nearest (next-nearest) neigh-
bors. The hopping amplitudes satisfy jtjkj ¼ 1.0 and
jΔjkj ¼ 0.5 and their signs are given in Fig. 3(a). The
partons can be used to generate the chiral spin liquid and we
aim to compute its entanglement spectrum. The system is
divided into two parts, the reduced density matrix of the left

TABLE I. Energy of the MPO-MPS results for the Haldane-
Shastry model with N ¼ 100 at several different bond dimen-
sions. The deviation is computed with respect to the exact ground
state energy −41.14391334.

D Energy Deviation

1000 −41.143 541 15 3.7 × 10−4

2000 −41.143 879 56 3.4 × 10−5

3000 −41.143 906 14 7.2 × 10−6

4000 −41.143 911 12 2.2 × 10−6

5000 −41.143 912 48 8.6 × 10−7

PHYSICAL REVIEW LETTERS 124, 246401 (2020)

246401-3



half is computed, and the entanglement spectrum (i.e., the
negative logarithm of the eigenvalues of the reduced
density matrix) is plotted versus the good quantum num-
bers. This is almost impossible to do for generic parton
wave functions using current Monte Carlo methods and
unambiguously demonstrates the power of our method.
It is preferable to consider the cylinder rather than the

torus for our purpose [61]. The y direction is chosen to be
periodic and the associated boundary twist angle is Θy. An
important step is to find the minimally entangled states
(MES) because topological information can be extracted
most efficiently using them [62–67]. This can be done if Ny

is a multiple of two (but not four) and Θy ¼ π or if Ny is a
multiple of four and Θy ¼ 0. For such systems, the energy

spectrum of HCI contains four exact zero modes d†Lα and
d†Rα [see Fig. 3(b)], which reside at the left and right edges.
The many-body state in which the negative energy single-
particle orbitals are fully populated is denoted as jΦi. The
zero modes can be occupied in four different ways to
generate

jΨ1i ¼ PGd
†
L↑d

†
L↓jΦi; jΨ2i ¼ PGd

†
L↑d

†
R↓jΦi;

jΨ3i ¼ PGd
†
L↓d

†
R↑jΦi; jΨ4i ¼ PGd

†
R↑d

†
R↓jΦi: ð9Þ

The numerical results quoted below are from the case with
Nx ¼ 16 and Ny ¼ 10, but smaller systems have also been
checked and the results are consistent. The only appreciable
overlap between them at D ¼ 8000 is jhΨ1jΨ4ij ¼ 0.9237
(others are smaller than 10−8), which agrees with the
previous claim that jΨ1i ¼ jΨ4i [66]. This means that
there are three rather than two linearly independent states,
so the choice of MES is a subtle issue, but it turns out that
either jΨ1i and jΨ2i (or jΨ1i and jΨ3i) can be used as the
two MESs [41]. The entanglement spectra of jΨ1i and jΨ2i
atD ¼ 9000 are shown in Figs. 3(c) and 3(d). The accuracy
of these states is quantified by the many-body momentum

Ky. The ideal expectation value of exp½iKyNy=ð2πÞ� is 1,
whereas the numerical value is 0.9714 for jΨ1i and 0.9955
for jΨ2i. The good quantum numbers for the entanglement
levels are the z-component spin SLz and the momentum KL

y

of the left half. The characteristic chiral boson counting
1; 1; 2; 3; 5;…, are observed in all cases. The lowest
entanglement eigenvalue of jΨ1i is smaller than that of
jΨ2i, so the former is the identity sector and the latter is the
semion sector. The total countings agree with those of the
SUð2Þ1 Wess-Zumino-Witten model: 1; 3; 4; 7… in the
identity sector and 2; 2; 6; 8… in the semion sector [68].
The topological spin h of the semion can be computed as
h ¼ ðξ0;s − ξ0;IÞ=Δ, where ξ0;I (ξ0;s) is the lowest entangle-
ment eigenvalue in the identity (semion) sector and Δ is the
spacing between the first two entanglement levels in the
identity sector [see Fig. 3(c)]. Its numerical value 0.2617 is
reasonably close to the theoretical value 1=4.
The identification of MES here reveals an important

general feature about the entanglement structure of chiral
topological phases enriched by a global symmetry (denoted
by G). The topological sectors on the cylinder are labeled
by definite anyon flux threading the cylinder. While the
ground state is invariant under G, the two anyons may
transform under a nontrivial (higher-dimensional and
possibly projective) representation of G and possess non-
local entanglement. If one would like to obtain an entan-
glement spectrum that corresponds to a single CFT tower
(labeled by a primary associated with the anyon), the

distance step

(a) (b)

FIG. 2. (a) The absolute difference F between the numerical
and exact values of the spin-spin correlation function in the N ¼
100 system. (b) The evolution of the von Neumann entanglement
entropy Sc at the center of the N ¼ 100 system during the
calculation. Three methods are compared: (1) the original modes
in jΨHSi (red dots), (2) the Wannier transformed modes from left
to right (blue squares), and (3) the Wannier transformed modes
and the left-meet-right strategy (magenta hexagons).

(a) A B A B A B

E

zero modes(b)

(c) (d)

FIG. 3. (a) Schematics of the parton Hamiltonian of the chiral
spin liquid model. Each unit cell contains two lattice sites labeled
as A and B. The signs of tij are indicated using� along the bonds.
The signs of Δjk are negative (positive) along (against) the arrows
on the colored lines. (b) The parton energy spectrum of the
system with Nx ¼ 16 and Ny ¼ 10 on the cylinder with Θy ¼ π.

There are two exact zero modes d†Lα and d
†
Rα for each spin that are

localized at the left and right edges. (c),(d) The entanglement
spectrum of jΨ1i and jΨ2i. The dashed lines indicate two sets of
conformal towers in the two panels.
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symmetry should be broken such that the anyons are
projected onto certain “product state” and the nonlocal
entanglement is destroyed. For the semion sector of the
chiral spin liquid, we get a singlet state jΨ̃si ¼ jΨ2i − jΨ3i
when the semions carrying spin-1=2 at the edges form a
nonlocal singlet [41]. However, the MES in the semion
sector should be taken as jΨ2i or jΨ3i, where the semions at
the edges are “polarized.” This observation is very useful
for studying chiral topological order using entanglement
spectrum, especially when symmetries are implemented in
DMRG simulations.
Conclusion and discussion.—In summary, we have

constructed exact tensor network representations for
generic parton wave functions. The tensor network repre-
sentations take the form of sequential operations of MPO
on simple product states and can be conveniently com-
pressed into MPS. This allows one to characterize parton
wave functions using powerful MPS techniques and greatly
expands the utility of parton wave functions as variational
ansatz. The parton wave functions studied in this Letter
have no free parameters. An immediate next step is to
consider some cases with variational parameters and search
for their optimal values. The tensor network automatic
differentiation method is well adapted for this purpose
[69–71]. The parton wave functions could be supplied as
initial inputs to speedup DMRG simulations [4,72].
Besides the ground states, our method is also capable of
studying excitations. The numerical prospect of parton
wave functions in the age of tensor networks deserves
further investigations and we hope to report other interest-
ing results in future works.
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