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We develop a unified minimal scheme to classify quantum chaos in the Sachdev-Ye-Kitaev (SYK) and
supersymmetric (SUSY) SYK models and also work out the structure of the energy levels in one periodic
table. The SYK with even q-body or SUSY SYK with odd q-body interaction, with N even or odd number
of sites, are put on an equal footing in the minimal Hilbert space; N (mod 8), q (mod 4) double Bott
periodicity, and a reflection condition are identified. Exact diagonalizations (EDs) are performed to study
both the bulk energy level statistics and hard-edge behaviors. Excellent agreements between the ED results
and the symmetry classifications are demonstrated. Our compact and systematic methods can be
transformed to map out more complicated periodic tables of SYK models with more degrees of freedom,
tensor models, or symmetry protected topological phases.
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Introduction.—Extensive research efforts are devoted to
investigating quantum chaos and quantum information
scramblings in the Sachdev-Ye-Kitaev (SYK) model [1–6]
and its supersymmetric (SUSY) generalizations [7]. In the
early time, an exponential growth in out-of-time-order
correlators (OTOCs) of the SYK models defines the
quantum Lyapunov exponent λL ¼ 2π=β saturating the
quantum chaos bound [8–15]. This remarkable feat sug-
gests that the SYK models may correspond to a boundary
theory of the 2D Jackiw-Teitelboim dilaton gravity [4,16].
In the late time, the OTOCs are known to saturate and

become featureless, while the quantum chaos needs to be
described by the random matrix theory (RMT). Despite its
sparse nature in randomness, SYK models can still be
described precisely by the RMT [17–25]. The RMT
classifications of the SYK models have been applied to
q ðmod 4Þ ¼ 0 for all N [19,20,23,25] and q ðmod 4Þ ¼ 1,
2, 3 for the even N case only [21,22]. For q ðmod 4Þ ¼ 0,
Refs. [19,25,26] developed a special procedure to treat the
N odd case by adding an extra decoupledMajorana fermion
into the system, while such a procedure is not necessary in
the N even case. So in all previous works, the SYK and
N ¼ 1 SUSY SYK, the odd N and even N cases were
treated differently and separately.
Here, by employing the Clifford algebra representation

of Majorana fermions in a minimal Hilbert space, we
develop a systematic and unified scheme to classify random
matrix behaviors of the SYK models with generic q-body
interaction and N site. After identifying complete set of
conserved (or chiral) quantities and antiunitary (or unitary)
symmetry operators, we also work out the fine structure of
the energy levels explicitly. The SYK with even q and
SUSY SYK with odd q, N even or odd are treated on the

same footing. There are 9 classes (except class AIII) with
N ðmod 8Þ and q ðmod 4Þ double Bott periodicity and a
reflection condition identified in one periodic Table I.
A new moment ratio of the smallest positive eigenvalue
is introduced to determine hard-edge index efficiently. Our
systematic approach not only reproduces the previously
known results in a much more efficient and compact way,
but also lead to new results on q ðmod 4Þ ¼ 1; 2; 3 with odd
N, thus completes the whole periodic table for the SYK
models. It provides additional deep and global insights into
the family of SYK models showing maximal quantum
chaos and their corresponding quantum gravity models in
the bulk.
A unified minimal scheme.—Consider a generic all-to-all

q-body Majorana interaction

Qq ¼ ibq=2c
X

i1<���<iq

Ci1���iqχi1χi2 � � � χiq ; ð1Þ

where Ci1���iq is real and satisfies the Gaussian distributions

with mean hCi1���iqi ¼ 0 and variance hC2
i1���iqi ¼ J2SYKðq −

1Þ!=Nq−1 for even q or hC2
i1���iqi ¼ JN¼1ðq − 1Þ!=Nq−1 for

odd q. The prefactor ibq=2c ensures the Hermitian of Qq,
and bq=2c (integer floor) denotes the biggest integer
smaller than q=2. When q is even, Qq is a bosonic operator
which is the SYK Hamiltonian with q-body interactions
[3,4,9]; when q is odd, Qq is a fermionic operator which
is the supercharge of N ¼ 1 SUSY SYK Hamiltonian
H ¼ Q2

q [7,21,22].
Equation (1) contains N Majorana fermions satisfying

the Clifford algebra fχi; χjg ¼ 2δij and χ†i ¼ χi, thus
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admitting a 2bN=2c-dimensional matrix representation [27].
In this representation, one can choose χi with odd i to
be real and symmetric, and χi with even i to be pure
imaginary and skew symmetric [28]. By collecting real
and imaginary represented Majorana fermions, one can
define two antiunitary particle-hole symmetry operators:

P ¼ K
Q⌈N=2⌉

i¼1 χ2i−1 and R ¼ K
QbN=2c

i¼1 iχ2i, where K is the
complex conjugation operator, ⌈N=2⌉ (integer ceiling)
denotes the smallest integer greater than N=2, therefore
bN=2c þ ⌈N=2⌉ ¼ N holds for any integer N.
It can be shown that PχiP−1 ¼ −ð−1Þ⌈N=2⌉χi and

RχiR−1 ¼ ð−1ÞbN=2cχi, thus

PQqP−1 ¼ ð−1Þ⌈q=2⌉ð−1Þq⌈N=2⌉Qq; ð2aÞ

RQqR−1 ¼ ð−1Þbq=2cð−1ÞqbN=2cQq: ð2bÞ

One can also find their squared values

P2 ¼ ð−1Þb⌈N=2⌉=2c; R2 ¼ ð−1Þ⌈bN=2⌉=2c: ð3Þ

Multiplying two equations in Eq. (2) leads to the
following unified classification: When qð1þ NÞ is even,
P and R either both commute withQq or both anticommute
with Qq, thus Λ ¼ PR is a conserved quantity (fermion
number parity) satisfying ½Λ; Qq� ¼ 0 if N is even, or an
identity operator if N is odd. Then one only needs one of
the two operators acting as commuting operators Tþ or
anticommuting operators T− [29]. When qð1þ NÞ is odd,
one of P, R commutes withQq and the other anticommutes
with Qq, thus Λ ¼ PR is a unitary chirality operator
satisfying fΛ; Qqg ¼ 0. Then one needs both operators,
one acting as Tþ, the other acting as T− [29].

The classification can be systematically done by evalu-
ating Eqs. (2), (3) and their commutation relations with Λ.
The double Bott periodicity in ðq;NÞ can be directly inferred
from Eqs. (2) and (3), which are invariant under q → qþ 4
or N → N þ 8. Furthermore, one can also identify a
reflection symmetry: changing ðq;NÞ → ð−q;−NÞ and
exchanging P and R keep Eqs. (2) and (3) invariant [29].
ELS from RMT.—For an ordered set of energy

levels fλng, the Wigner surmises [30–32] for the distribu-
tion of the consecutive energy level spacings rn¼
ðλnþ2−λnþ1Þ=ðλnþ1−λnÞwere derived PWðrÞ ∝ ðrþ r2Þβ=
ð1þ rþ r2Þ1þ3β=2, where β ¼ 1, 2, 4 correspond to the
Gaussian orthogonal, unitary, and symplectic ensemble
(GOE-GUE-GSE), respectively. The bulk index β can be
extracted by comparing ED data with PWðrÞ, or calculating
the expectation hri or its cousin hr̃iwith r̃n¼minðrn;1=rnÞ.
It was documented that hr̃i ¼ 0.5359, 0.6027, 0.6762 for
β ¼ 1, 2, 4, respectively. In contrast, the distribution of the
ratio rn from independent random energy levels yields the
Poisson statistics with PPðrÞ¼1=ð1þrÞ2 and hr̃i ¼ 0.386.
For the 7 randommatrix ensembles with a spectral mirror

symmetry, the hard-edge universality can be unveiled
[33–40] from the distribution function of the smallest
positive level λ1, which vanishes as Pðλ1Þ ∼ λα1 when
λ1 → 0. In practice, to extract the edge exponent α, it is
more efficient to introduce a new ratio A ¼ hλ21i=hλ1i2 ≈
ð1.60; 1.58Þ; 1.27; 1.17; 1.13 for the ensembles with α ¼ 0,
1, 2, 3 (the two values at α ¼ 0 correspond to β ¼ 1, 2
respectively) [29]. There is one-to-one mapping among the
RMT classes, the two indices ðβ; αÞ, and the two ratios
ðr̃; AÞ [41]. We first use our new minimum scheme to
reproduce the known results on q ðmod 4Þ ¼ 0 case in the
Supplemental Material [29], then apply it to study the other
cases in the following.
q ðmod 4Þ ¼ 2.—Since qð1þ NÞ is even, two operators

always anticommute with Hamiltonian fP;Qqg ¼
fR;Qqg ¼ 0, and Λ ¼ PR is the conserved parity if N
is even or Λ ¼ 1 if N is odd. The commutation relation
between P and Λ, the value of P2 lead to the following
classification: When N ðmod 8Þ ¼ 2; 6, both operators
swap the parity, thus Qq is in Class A(GUE); when
N ðmod 8Þ ≠ 2; 6, either P preserves parity [N ðmod 8Þ ¼
0; 4] or no conserved quantity (N is odd), thus P2 ¼ �1
means Qq belongs to Class D(BdG), C(BdG), respectively.
There is no degeneracy in all cases. These results are listed
in the 6th and 7th row of Table I.
The classification and level degeneracy with even N are

consistent with those in Ref. [22]. For new results on odd
N, we present an ED study of ELS [42] for q ¼ 6 SYK
model with N ¼ 17, 19, 21, 23 in Fig. 1. The RMT indices
β and α are extracted from the probability distribution
function PðrÞ and Pðλ1Þ, or ratios hr̃i and A, respectively.
Both methods lead to ðβ; αÞ ¼ ð2; 0Þ; ð2; 2Þ; ð2; 2Þ; ð2; 0Þ
for N ¼ 17, 19, 21, 23, respectively. We also checked the

TABLE I. The periodic table of SYK for even q > 2 and SUSY
SYK for odd q > 1. 3 classes for SYK and 8 classes for N ¼ 1
SUSY SYK. All the results in the table were achieved in a unified
minimum scheme. In the listed degeneracy, 1þ 1 means the two
degenerate energy levels have opposite parities.

N ðmod 8Þ 0 1 2 3 4 5 6 7

P2 value þ þ þ − − − − þ
R2 value þ þ − − − − þ þ
q ðmod 4Þ ¼ 0 AI AI A AII AII AII A AI
H ¼ Qq degeneracy 1 1 1þ 1 2 2 2 1þ 1 1

q ðmod 4Þ ¼ 2 D D A C C C A D
H ¼ Qq degeneracy 1 1 1 1 1 1 1 1

q ðmod 4Þ ¼ 1 BDI AI CI C CII AII DIII D
Qq degeneracy 1 1 1 1 2 2 2 1
H ¼ Q2

q degeneracy 2 1 2 2 4 2 4 2

q ðmod 4Þ ¼ 3 BDI D DIII AII CII C CI AI
Qq degeneracy 1 1 2 2 2 1 1 1
H ¼ Q2

q degeneracy 2 2 4 2 4 2 2 1
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degeneracy is always 1. These results match the classi-
fication and degeneracy listed in Table I.
q ðmod 4Þ ¼ 1.—Now, qð1þ NÞ is odd for even N and

even for odd N, the former leads to the chiral operator
Λ ¼ ð−1ÞF, the latter leads to Λ ¼ 1, so neither will lead to
a conserved quantity.
When N ðmod 8Þ ¼ 0; 4, fP;Qqg ¼ ½R;Qq� ¼ 0 and

P2 ¼ R2 ¼ �1. Since P (R) anticommutes (commutes)
with Qq, their squared values lead to N ðmod 8Þ ¼ 0 is
class BDI(chGOE), thus Qq has no degeneracy, but a
mirror symmetry, so H ¼ Q2

q has twofold degeneracy;
N ðmod 8Þ ¼ 4 is class CII(chGSE), thus Qq has double
degeneracy and also a mirror symmetry, so H ¼ Q2

q has
fourfold degeneracy. When N ðmod 8Þ ¼ 2; 6, ½P;Qq� ¼
fR;Qqg ¼ 0 and P2 ¼ −R2 ¼ �1. Since P (R) commutes
(anticommutes) with Qq, their squared values lead to
N ðmod 8Þ ¼ 2 is class CI(BdG), thus Qq has no degen-
eracy, but a mirror symmetry, so H ¼ Q2

q has twofold
degeneracy;N ðmod 8Þ ¼ 6 is class DIII(BdG), thusQq has
double degeneracy and also a mirror symmetry, soH ¼ Q2

q

has fourfold degeneracy.
When N ðmod 8Þ ¼ 1; 5, ½P;Qq� ¼ ½R;Qq� ¼ 0 and

P2 ¼ R2 ¼ �1. Since P and R commute with Qq, their

squared values lead to the following: N ðmod 8Þ ¼ 1 is
class AI(GOE), thus Qq has no degeneracy, no mirror
symmetry either, so H ¼ Q2

q has no degeneracy;
N ðmod 8Þ ¼ 5 is class AII(GSE), thus Qq has double
degeneracy and no mirror symmetry, so H ¼ Q2

q have
twofold degeneracy. When N ðmod 8Þ ¼ 3; 7, fP;Qqg ¼
fR;Qqg ¼ 0 and P2 ¼ R2 ¼ ∓1. Since P and R anticom-
mute with Qq, their squared values lead to suggest
N ðmod 8Þ ¼ 3; 7 is class C(BdG), D(BdG). Both cases
Qq has no degeneracy, but a mirror symmetry, so H ¼ Q2

q

has twofold degeneracy.
The classification for q ðmod 4Þ ¼ 1 and the level

degeneracy are summarized in the 8 th–10 th rows of
Table I. The results with even N are consistent with those in
Ref. [22]. For new results on odd N, we present an ED
study of ELS for q ¼ 5 SYK supercharge with N ¼ 17, 19,
21, 23 in Fig. 2. Since the index α is only defined for cases
with a spectral mirror symmetry, when the mirror symmetry
is absent, we plot the spectral density ρðλÞ averaged from 1
sample and 104 samples [43,44]. These data lead to
ðβ; αÞ ¼ ð1;−Þ; ð2; 2Þ; ð4;−Þ; ð2; 0Þ for N ¼ 17, 19, 21,
23, respectively.
q ðmod 4Þ ¼ 3.—The situation is similar to qðmod4Þ¼1

case. In fact, the reflection relation [29] in the operator
algebra Eqs. (2) and (3) hints the SYK model with ðq;NÞ
and ð4n − q; 8m − NÞ are in the same class, where n and
m are integers. The classification and degeneracy of

(a) (b)

FIG. 2. The same notation as Fig. 1, but for q ¼ 5 SYK
supercharge. The class AI and AII have β ¼ 1, 4, but no mirror
symmetry [43], thus no well-defined α exponent.

(b)(a)

FIG. 1. The bulk energy level statistics and edge exponents of
the q ¼ 6 SYK model. (a) Distributions of the consecutive level
spacing ratio r. The smooth curves are Wigner surmises corre-
sponding to Poisson, GOE, GUE, and GSE statistics. (b) Dis-
tributions PðλkÞ; k ¼ 1, 2, 3 of the smallest 3 energy levels. The
smooth curves for λ1, λ2, λ3 are obtained from numerical
diagonalization of corresponding random matrix ensembles with
size 103 averaged over 106 samples.
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q ðmod 4Þ ¼ 3 case can be obtained from q ðmod 4Þ ¼ 1
results by replacing N → 8 − N, which are summarized in
the 11 st–13 th rows of Table I. Classifications and
degeneracy at even N reproduce those in Ref. [22]. For
the new results at odd N, we present the ED study of q ¼ 3
SYK supercharge for N ¼ 17, 19, 21, 23 in Fig. 3. These
data show ðβ; αÞ ¼ ð2; 0Þ; ð4;−Þ; ð2; 2Þ; ð1;−Þ for N ¼ 17,
19, 21, 23, respectively.
Discussions.—It is instructive to compare Table I with

the periodic tables of topological insulators and super-
conductors [47,48]. Despite using the same Cartan labels
and sets of antiunitary operators, it is on topological
equivalent classes of noninteracting electrons’ gapped bulk
states with gapless edge modes. Its Bott periodicity is in the
space dimension d ðmod 8Þ. Later, adding more symmetries
such as translational symmetries, point group symmetries,
or nonisomorphic symmetries leads to richer periodic tables
for topological crystalline insulators [49].
The periodic Table I is on quantum chaos in 0þ 1

dimensional gapless quantum spin liquids of interacting
fermions. The most compact and systematic classification
method developed here can be applied to all kinds of
generalizations of SYK models such as the colored-SYK
model [10,50], SYK models with a global Uð1Þ or OðMÞ,
UðMÞ symmetry [11,51], and the two indices SYK model
[6]. It may also be applied to study quantum chaos in the
colored [52,53] or uncolored tensor model [54] and cavity
QED [55]. This is just putting more symmetries to lead to
more conserved quantities, also more operators, therefore

generating more complicated periodic tables. Its advan-
tages over the extended schemes may be even more evident
and dramatic as the periodic tables get more complicated.
As mentioned in the introduction, there are two com-

plementary ways to characterize the quantum chaos. One
way is to evaluate the OTOC function at a finite temper-
ature 1 ≪ βJ ≪ N by the 1=N expansion [56] to extract the
Lyapunov exponent at an early time β < t < tE ¼ β log N,
where tE is called the Ehrenfest or scrambling time. The
other way is to use the RMT to characterize the ELS or
spectral form factor in a tenfold way at a finite and large
enoughN. The RMT describes the energy level correlations
at the Heisenberg timescale tH ∼ 1=Δ ∼ eN=NJ, where
Δ is the mean many-body energy level spacing, but
breaks down when the energy level spacing is beyond
the Thouless energy ETh ∼ N2Δ. So it fails when t < tTh ∼
1=ETh ∼ tH=N2. Although the 1=N expansion has been
pushed from the scrambling time ts to the longer timescale
N=J in Ref. [12], it remains unknown how to push it to the
Thouless time tTh. Because the wide separation between the
two timescales N=J and tTh, it remains challenging to
explore the double periodicity and the reflection symmetry
in Table I by 1=N, 1=q, or N=q2 expansions. The possible
impacts on the classifications of quantum black holes in the
bulk [57] are being studied.

We acknowledge AFOSR FA9550-16-1-0412 for sup-
port. This research at KITP was supported in part by
the National Science Foundation under Grant No. NSF
PHY-1748958.

Note added.—Recently, we found the possible implications
of our periodic table on the bulk gravity has been
thoroughly presented in Ref. [58]. For example, the 8
distinct random matrix classes of the supersymmetric SYK
models listed in Table I correspond to 8 variants of Jackiw-
Teitelboim supergravity theories in the bulk.
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