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Excitation of the anomalously low lying nuclear isomer 229mThð3=2þ; 8.28� 0.17 eVÞ in the process of
inelastic electron scattering is studied theoretically in the framework of the perturbation theory for the
quantum electrodynamics. The calculated cross sections of 229mTh by the extremely low energy electrons in
the range 9–12 eV for the Th atom and Th1þ;4þ ions lie in the range 10−25–10−26 cm2. Being so large, the
cross section opens up new possibilities for the effective nonresonant excitation of 229mTh in experiments
with an electron beam or electron (electric) current. This can be crucial, since the energy of the isomeric
state is currently known with an accuracy insufficient for the resonant excitation by photons. In addition,
the cross section of the time reversed process is also large, and as a consequence, the probability of the
nonradiative 229mTh decay via the conduction electrons in metal is ≈106 s−1, that is, close to the internal
conversion probability in the Th atom.
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Over the past 30 years the anomalously low-lying
isomeric level 3=2þðEis < 10 eVÞ in the 229Th nucleus
has been the subject of intensive study in experimental and
theoretical ways. Being recently adopted, the value for the
energy of the isomeric state, Eis ¼ 8.28� 0.17 eV, was
obtained in Ref. [1]. This result was preceded by a long
period of measurements. During this time the values of
Eis ≤ 100 [2], 1� 4 [3], 3.5� 1 [4], and 7.8� 0.5 eV [5]
were obtained. The present value is not the end of the story
and a more refined accuracy is required for the most
important applications of the Thorium isomer, namely,
the nuclear clock [6–9] and the nuclear laser [10,11].
Studies of the 229mThð3=2þ; 8.28� 0.17 eVÞ isomer are

also important for many others reasons, including the
fundamental ones. In this Letter we refer to the relative
effects of the variation of the fine structure constant and the
strong interaction parameter [12–14], control of the iso-
meric level γ decay via the boundary conditions [15] or
chemical environment [16,17], the checking of exponen-
tiality of the decay law at long times [18], the detection
of the unusual decay of the 229Th ground state into
the isomeric level in the muonic atom of 229Th [19], the
coherent oscillations between the components of the
hyperfine structure in the hydrogen-like ion 229Th89þ

[20], acceleration of the alpha decay of the 229Th nucleus
via the isomeric state [21], and so on.
The present Letter is focused on the excitation of the

229mTh nuclear isomer, which remains one of the problems
to be solved. Excitation of 229mTh by laser radiation through
the electron shell at the electron bridge process [22–28] is
considered now as the most promising scheme to work with

the 229Th nucleus. Theoretically, under the resonant con-
ditions this process provides for the efficient excitation of
229Th nuclei. Unfortunately, at present it is extremely
difficult to satisfy these conditions, since not only the
nuclear transition energy, but also the energies and quantum
numbers of the excited states of the Th atom and ions are
known with insufficient accuracy.
In this Letter, the excitation of 229mTh by the low energy

electrons in the Thorium atom and Th1þ;4þ ions is inves-
tigated through the inelastic electron scattering. The 229Th
nucleus is screened by the atomic shell consisting of 90
electrons. Therefore, the main scattering channel of low
energy electrons should be caused by the electron shell of
the Th atom. For example, the cross section of electron
impact ionization for the Th atom in the electron energy
range of 10–50 eV and the total elastic scattering cross
section in the range 100–200 eV reach the value of
10−15 cm2 [29,30]. Nevertheless, even in this case, the
scattered electron can interact with the nucleus inelastically,
since its wave function near the nucleus has a nonzero
amplitude. Note, that the wave function of the low energy
electron, emitted from the valence shell of the Th atom in
the internal conversion process, has similar properties. (The
internal conversion is the main decay channel of the 229mTh
isomer in the Th atom [31–34].) In the 229mTh decay, the
excitation energy transfers from the nucleus to the valence
electron because both electron wave functions—the bound
state and the continuous spectrum state—have nonzero
amplitudes near the nucleus. The same holds true for
scattering, with the only difference being that both wave
functions belong to a continuum.
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The inelastic electron scattering is not resonant. In this
point, it compares favorably with the photon excitation of
the 229Th nucleus especially at early stages of research, with
the exact value of Eis remaining unknown.
The cross section of the inelastic electron scattering from

a nucleus in the general case can be written using the Fermi
golden rule,

σ ¼ 2π

Z
dΩpf

jhfjHintjiij2
vi

ρf; ð1Þ

where vi ¼ pi=Ei is the speed of the scattering electron,

pi;f and Ei;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i;f þm2

e

q
are the momentum and energy

of the electron with mass me in the initial, i, and final, f,
states (the system of units is ℏ ¼ c ¼ 1), ρf ¼ pfEf=ð2πÞ3
is the density of final states.
The Hamiltonian of the interacting electron jϱfiðrÞ and

nuclear JςfiðRÞ currents has the form

hfjHintjii ¼
Z

d3rd3RjϱfiðrÞDϱςðω; r −RÞJςfiðRÞ: ð2Þ

Here the photon propagator in the frequency-coordinate
representation is [35] Dϱςðω;r−RÞ¼−gϱςexpðiωjr−RjÞ=
jr−Rj, where gϱς is the metric tensor, ω ¼ Ei − Ef is the
energy transferred from the electron to the nucleus. This
energy is equal to the isomeric state energy, i.e., ω ¼ Eis.
Taking into account the Siegert’s theorem (see, for

example, [36]) and the long-wave approximation for
the photon-nucleus interaction, one can simplify the
Hamiltonian in Eq. (2) by expanding it in the series
over the electric, EL, and magnetic, ML, multipoles

hfjHEðMÞ
int jii ¼ 4πiω

P
LM

R
d3rd3RjfiðrÞ · BEðMÞ

LM ðωrÞ×
AEðMÞ

LM ðωRÞ · JfiðRÞ, where the dot means the scalar

product of the vectors, and AEðMÞ
LM and BEðMÞ

LM are
the well-known vector potentials [36] AE

LMðωRÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLþ1Þ=ð2Lþ1Þp
YLL−1;MðΩRÞjL−1ðωRÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ð2Lþ1Þp

×
YLLþ1;MðΩRÞjLþ1ðωRÞ, AM

LMðωRÞ ¼ YLL;MðΩRÞjLðωRÞ.
The potential BEðMÞ

LM is obtained fromAEðMÞ
LM by replacing the

Bessel spherical function jLðxÞ with the Hankel spherical

function of the first kind hð1ÞL ðxÞ [37], YLJ;MðΩRÞ is the
vector spherical harmonics [38].
Using the standard parametrization, the nuclear

current is written as j R d3RJfiðRÞAEðMÞ
LM ðωRÞj ¼

ωL=ð2Lþ 1Þ!! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðLþ 1Þ=Lp jhJfMfjM̂EðMÞ
LM jJiMiij, where

the introduced matrix element of the nuclear current

operator M̂EðMÞ
LM between the states with spins Ji and Jf

is connected with the reduced probability of the nuclear
EðMÞL transition by the relation B½EðMÞL; Ji → Jf� ¼
1=ð2Ji þ 1ÞPMi;Mf;M jhJfMfjM̂EðMÞ

LM jJiMiij2.

In the electron current jfiðrÞ ¼ eψ ð−Þ
pfμfαψ

ðþÞ
piμi , e is the

electron charge, α ¼ γ0γ, and γi fi ¼ 0; 1; 2; 3g are

the Dirac matrices, ψ ðþÞ
piμi denotes the wave function of

the initial state of the electron with the momentum pi and
the projection of the electron spin μi on the direction

νi ¼ pi=pi, and ψ ð−Þ
pfμf is a wave function of the final state

with the momentum pf and the projection μf of the spin on
the direction νf ¼ pf=pf. These wave functions are the
exact solutions of the Dirac equations that asymptotically
go over into a superposition of a plane wave with a
diverging and converging spherical wave [35]. The explicit

form of ψ ð�Þ
pμ is as follows

ψ ð�Þ
pμ ¼ 4π

X
j;l;m

ψE;j;l;mðxÞ½Ω�
jlmðνÞυμðνÞ�eð�Þiδlj ; ð3Þ

where x ¼ r=aB, aB is the Bohr radius, j and l are the total
and orbital angular momenta of the electron, m is the
projection of j onto the quantization axis. The functions
ψE;j;l;mðxÞ in Eq. (3) are

ψE;j;l;mðxÞ ¼
1

paB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþme

2E

r �
gljðxÞΩjlmðrÞ

−ifl0jðxÞΩjl0mðrÞ
�
;

and l0 ¼ 2j − l. The large glj and small fl0j components of
ψE;j;l;mðxÞ are the numerical solutions of the Dirac equa-
tions for the electron energies E > me

g0ðxÞ þ 1þ κ

x
gðxÞ − 1

e2

�
E
me

þ 1 −
VðxÞ
me

�
fðxÞ ¼ 0;

f0ðxÞ þ 1 − κ

x
fðxÞ þ 1

e2

�
E
me

− 1 −
VðxÞ
me

�
gðxÞ ¼ 0: ð4Þ

The functions gi;fðxÞ in Eq. (4) are normalized at x → ∞
with the condition gðxÞ ¼ sinðpaBxþ φljÞ=x, where φlj is
a phase, κ ¼ lðlþ 1Þ − jðjþ 1Þ − 1=4.
The potential energy VðxÞ of the electron in Eq. (4) is the

sum of the electron shell potential energy VshellðxÞ and that
of the unscreened nucleus VnuclðxÞ. Under the standard
assumption that a nucleus with the atomic number A and
the charge Z is represented by a uniformly charged sphere
of the radius xR0

¼ R0=aB, where R0 ¼ 1.2A1=3 fm we
conclude that the electron potential energy in its potential is
VnuclðxÞ ¼ −E0ðZ=2xR0

Þ½3 − ðx=xR0
Þ2� for 0 ≤ x ≤ xR0

,
and VnuclðxÞ ¼ −E0Z=x for x ≥ xR0

where E0 ¼ mee4 is
the atomic unit of energy.
The electron shell potential has been found as follows. At

the first stage, the electron density ρeðxÞ in the Thorium
atom (Th0) and Th1þ;4þ ions (see an example in Ref. [39])
was calculated within the DFT theory [40,41] through the
self-consistent procedure. At the second stage, the radial
component of the electric field as a function of x was found
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by the numerical integration of ρeðxÞ. And at the third
stage, the electron shell potential was obtained by the
numerical integration of the electric field. The resulting
electron shell potentials for Th0;1þ;4þ are shown in Fig. 1.
The potential energy VshellðxÞ for Th0;1þ;4þ is e times the
corresponding functions in Fig. 1.
Substituting the expressions obtained for the currents in

Eq. (1), averaging over the initial states, and summing over
all final states, we arrive at the following scattering cross
section,

σ ¼ ð4πeÞ2a2B
pf

pi

Ei þm
p2
i

Ef þm

p2
f

×
X
L

X
T ¼E;M

X
li ;
lf ;

ji
jf

ω2Lþ2

½ð2Lþ 1Þ!!�2 ð2ji þ 1Þ

× ðCjf1=2
ji1=2L0

Þ2BðT L; Ji → JfÞjmT L
f;i j2; ð5Þ

where C
jf1=2
ji1=2L0

is the Clebsch-Gordan coefficient, mT L
f;i

stands for the electron matrix elements

mEL
fi ¼

Z
∞

0

hð1ÞL ðωaBxÞ½giðxÞgfðxÞ þ fiðxÞffðxÞ�x2dx;

mML
fi ¼ κi þ κf

L

Z
∞

0

hð1ÞL ðωaBxÞ½giðxÞffðxÞ

þ fiðxÞgfðxÞ�x2dx: ð6Þ

In Eq. (6), the simplified form of mEL
fi is used. One can

neglect the terms containing hð1ÞL−1ðωaBxÞ [42], since

hð1ÞL−1ðωaBxÞ ≪ hð1ÞL ðωaBxÞ for low energy transitions,
when the condition ωaBx ≪ 1 is fulfilled (see below).
The summation over the orbital momenta li and lf is

performed in Eq. (5), since the calculation should take into
account all possible combinations of angular momenta and

the parity selection rules. It can be done by means of the
well-known representation for the Clebsch-Gordan coef-

ficient through the 6j symbol [43] C
jf1=2
ji1=2L0

¼ ð−1Þlfþ1=2þjfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2li þ 1Þð2jf þ 1Þp
C
lf0
li0L0

f li
jf

1=2
L

ji
lf
g.

We are concerned with the energy region where the
kinetic energy of the electron in the initial state Ee ¼
Ei −me satisfies the condition Ee ≪ me. In that case, the
cross section (5) is simplified, taking the form

σEðMÞL ¼ 4e2λ2γis

�
Ee

Eis

�
−3=2

�
Ee

Eis
− 1

�
−1=2

×
B½EðMÞL; Ji → Jf�

a2LB

×
X
li ;
lf ;

ji
jf

ð2liþ 1Þð2ji þ 1Þð2jf þ 1Þ
ð2Lþ 1Þ2

× ðClf0
li0L0

Þ2
�
li L lf
jf 1=2 ji

�
2

jm̃EðMÞL
fi j2; ð7Þ

where λγis ¼ 2π=Eis is the wavelength of the isomeric
nuclear γ transition. The electron matrix elements in
Eq. (7) are

m̃EL
fi ¼

Z
∞

0

½giðxÞgfðxÞ þ fiðxÞffðxÞ�
dx
xL−1

;

m̃ML
fi ¼ κi þ κf

L

Z
∞

0

½giðxÞffðxÞ þ fiðxÞgfðxÞ�
dx
xL−1

: ð8Þ

In the case of the ML transition, one needs to change
li → l0i ¼ 2ji − li in Eqs. (7)–(8).
The integrals in the matrix elements formally diverge in

Eq. (6), and converge in Eq. (8). In our case, when

ωaB ≈ 1=450, the approximation hð1ÞL ðωaBxÞ ≈ −ið2L −
1Þ!!=ðωaBxÞLþ1 [37] used to derive Eq. (8) is valid in
the region 0 ≤ x≲ 50. Nevertheless, the use of formulas (8)
is quite correct. Integration over large values of the variable,
x ≥ 50, does not lead to a divergence of the integrals in
Eq. (6) due to the fast oscillations of the integrand. The
characteristic “period” of these oscillations xλe ¼λe=aB≤8

is determined by the wavelength of the electron in the initial
state. In the energy range Ee ≥ Eis, the condition λe ≤ 8aB
is always satisfied, leading to the fast convergence of
the integrals. In addition, it follows from the numerical
calculation (see the Supplemental Material [44]) that the
largest contribution (95%) to the electron matrix elements
(6) and (8) is due to the integration from a much smaller
area, 0 ≤ x≲ 0.01.
Currently, there are no experimental data on the exci-

tation of the low-lying nuclear states by the low energy
electrons. That is why the model was tested using the
atomic data. The excitation cross section of the Th atom in
the 7s1=2 → 7p1=2 transition calculated by formula (7) is in

-2.5x105

-2.0x105

-1.5x105

-1.0x105

-5.0x104

0.0
1E-4 1E-3 0.01 0.1 1 10

 

-2.40  x105

-2.41x105

0.0001         0.0002        0.0003   

Th0
Th1+

x 0.0001       0.001

x

x

x

x

x

(e
V

)

4

5

5

5

5

Th4+

FIG. 1. The electron shell potential for the Th atom and the
Th1þ;4þ ions.
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good agreement with the similar data for the Pb atom [45] if
one replaces in Eq. (7) a nuclear matrix element with the
indicated atomic E1 matrix element.
The cross sections for two sets of the reduced proba-

bilities BW:u:ðM1; Ji → JfÞ and BW:u:ðE2; Ji → JfÞ are
shown in Fig. 2. The first set is based on the experimental
data [46–49] for the M1 and E2 transitions between the
rotation bands 3=2þ½631� and 5=2þ½633� in the 229Th
nucleus found with Alaga rules in Refs. [18,50]). The
second set utilizes BW:u: for theM1 and E2 transitions from
Ref. [51], resulting from the computer calculation made in
the compliance with the modern nuclear models.
Within the considered region of small Ee, the radial

electron wave functions are proportional to E1=4
e in the

initial state, and to ðEe − EisÞ1=4 in the final state in the
Coulomb potential [52]. As a result, for the Th1þ;4þ cross
section, we obtain the dependence σ ∝ 1=Ee, Fig. 2.
The difference in the shape of the cross sections for the

atom and the ions near the reaction threshold of 8.28 eV is
due to the fact that in case of atom the electron interacts
with the nucleus at relatively short distances (≲aB) when it
penetrates into the electron shell, whereas in the case of
ions the Coulomb interaction occurs at larger distances. For
the Th atom near the reaction threshold σ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ee − Eis

p
[52]

and tends to zero at Ee → Eis. In the case of the 229Th1þ;4þ
ions, the cross section near the reaction threshold
approaches a constant, σ → const [52].
As for the contributions to the cross section of partial

waves, then, as one would expect [52], the S wave, namely

the SðiÞ1=2 → SðfÞ1=2 transition, makes the largest contribution to
the M1 scattering (see the Supplemental Material [44]),

whereas the PðiÞ
1=2 → PðfÞ

3=2 and PðiÞ
3=2 → PðfÞ

1=2 transitions are

dominant for the E2 component of the cross section (see the
Supplemental Material [44]).
Being very large, the cross section opens up completely

new possibilities for the excitation and study of the low-
lying nuclear isomer 229mTh. The first possibility is the
excitation in the dense laser plasma with the electron
temperature T ≈ Eis. The ratio of the number of excited
nuclei (Nis) to the number of nuclei in the ground state
(Ngr) in a plasma bunch with the electron energy distri-
bution fðEeÞ can be estimated as in [53] Nis=Ngr ≈
neτ

R
∞
Eis

fðEeÞvðEeÞσðEeÞdEe. For the electrons with the
Maxwell energy distribution fðEeÞ, the reaction rate
hσðEeÞvðEeÞi reaches 10−18–10−17 cm3 s−1. In the plasma
produced by the laser pulse of the duration τ ≈
10−8 − 10−9 s on a solid target, the electron density is
ne ≈ 1019–1020 cm−3. As a result, we obtain Nis=Ngr ≈
10−6, which corresponds to the efficiency of the resonant
process of nuclear excitation by electron capture (NEEC).
Indeed, in the NEEC process (see, for example, [54–56]),
the nucleus is excited resonantly by the plasma electrons
with the energy of Eeres ≈ Eis − jEbj, where Eb is the
electron binding energy for the ionized shell (for simplicity,
in the Thorium atom, we consider only the shell that makes
the main contribution to the probability of the internal
conversion, ΓIC

is , during the decay of 229mTh). For NEEC,
the working region of the electron spectrum equals approx-
imately to the internal conversion width of the nuclear state,
i.e., ΓIC

is . The energy of resonant electrons is Eeres ≈ 2 eV,
because the characteristic binding energy of the valence
electrons in Th is about 6 eV. As a consequence, the
effective NEEC cross section from the electrons with the
resonant wave length λeres ¼ 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEeres

p
is σNEEC ≈

ðλeres=2Þ2ΓIC
is =T ≈ 10−25 cm2 for the radiation width of

the isomeric transition Γrad
is ≈ 3.6 × 10−19 eV and the inter-

nal conversion coefficient α ¼ 1.6 × 109. Taking into
account the factor fðEeresÞ one can obtain the same value
Nis=Ngr ≈ 10−6 for the fraction of the excited nuclei. (That
is only to be expected, as, according to the perturbation
theory for the quantum electrodynamics, the inelastic
electron scattering and NEEC are the second-order proc-
esses described by the same Feynman diagram.) For further
studies, Th ions with the 229Th excited nuclei can be
extracted by an external electric field from a plasma and
implanted into thin film with a wide-gap dielectric material
(SiO2) (see details in Refs. [57–60]).
The second possibility is to excite 229mTh by the electron

(electric) current in solids or in experiments with the high-
current electron beam [61]. For the density of implanted
nuclei ρTh ¼ 1018–1019 cm−3, the target thickness h ¼
10 nm and the current je ¼ 1 A, the rate of electron
excitation of the isomeric nuclei in solids can be estimated
as dNis=dt ≈ σρThhje ≈ 105–106 s−1. In the electron beam
experiment, the generation of an avalanche of the
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FIG. 2. The electron inelastic scattering cross section of the
process 229Th0;1þ;4þðe−; e−Þ229mTh0;1þ;4þ with two data sets: Set
1—BW:u:ðM1; 5=2þ → 3=2þÞ ¼ 0.031 and BW:u:ðE2; 5=2þ →
3=2þÞ ¼ 11.7, Set 2—BW:u:ðM1; 5=2þ → 3=2þÞ ¼ 0.0076,
BW:u:ðE2; 5=2þ → 3=2þÞ ¼ 27.
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secondary electrons with the energies Ee > Eis increases
the efficiency of excitation of the 229Th nuclei. Note that in
these experiments it is not necessary to know the energy of
the nuclear isomeric level Eis with high accuracy to tune the
electron energy, since the excitation process is nonresonant.
Another interesting opportunity to observe the process

discussed above is to expose the electron shell to the intense
laser field after tunnel ionization [62]. In this case, the
electrons accelerated back to the ionized Th atom by the
laser field should excite the 229Th nuclei through the
inelastic scattering and NEEC.
Using the principle of detailed balance [52] ð2Jgr þ

1Þp2
i σgr→is ¼ ð2Jis þ 1Þp2

fσis→gr one can also calculate the
cross section for the time reversed process, which is the
decay of the isomeric state through the electron states in
the continuum. Such a situation arises, for example, when
the isomer is implanted into metal [63]. In the free electron
approximation [64] the decay probability through the
conduction electrons in metal is given by Wðe;e0Þ ≈
ρevFσfi. Here ρe is the density of conduction electrons,
vF is the Fermi velocity, and EF is the Fermi energy. For the
“standard” metal [65] with ρe ¼ 6 × 1022 cm−3 and EF ¼
5.5 eV we have Wðe;e0Þ ≈ 106 s−1 and the half-life of the
229mTh isomer is about 10−6 s. This is comparable to the
half-life of 229mTh decay via the internal conversion
channel [31,34].
In conclusion, the excitation cross section of the low

lying isomer in the 229Th nucleus has been calculated for
the inelastic scattering of the extremely low energy elec-
trons. First, the cross section turned out to be so large that
the decay probability of 229mTh in the process of the
conversion on the conduction electrons in metal is close
to the probability of the internal conversion in the Th atom.
Second, the calculated cross section provides for the
effective excitation of 229mTh: (i) in the dense laser plasma
with the temperature T ≈ Eis, (ii) in solids by the electron
(electric) current, and (iii) at the high-current electron
beam. Third, this approach is fundamentally different from
the well-known photon excitation, since it is nonresonant in
nature and does not require that the energy of the excited
level should be known. This is especially valuable at
present, when the energy of the isomeric level is known
with the accuracy of several tenths of the electron volt.
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