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An emergent global symmetry of the composite sector (called maximal symmetry) can soften the
ultraviolet behavior of the Higgs potential and also significantly modify its structure. We explain the
conditions for the emergence of maximal symmetry as well as its main consequences and present two
simple implementations. In both cases the emergence of maximal symmetry is enforced by the structure of
the gauge symmetries.
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The discovery of the Higgs boson has been a milestone
for particle physics [1,2]. However, the potential for such
an elementary scalar particle is generically sensitive to
physics at extremely high scales, rendering the Higgs
potential unstable to quantum corrections. One can
impose additional symmetries to eliminate this ultraviolet
(UV) sensitivity. Besides supersymmetry [3] or discrete
symmetry like twin parity [4] or trigonometric parity [5],
one widely considered possibility is a spontaneously
broken (approximate) global symmetry, with the Higgs
identified as one of the pseudo-Nambu-Goldstone bosons
(pNGB) of this symmetry breaking [6–8] (for reviews, see
Refs. [9,10]). Particular implementations of this global
symmetry breaking can forbid the UV divergences of the
Higgs potential. Some of the leading ideas along this
direction are collective symmetry breaking and little
Higgs [11] models, dimensional deconstruction [12,13],
warped extra dimensions [14–16], and the Weinberg sum
rule for a composite Higgs [17].
Recently a new concept has been proposed as an

alternative to these methods mentioned above; the UV
divergences of the Higgs potential from the top sector are
absent because of “maximal symmetry” [18]. The structure
of the low energy effective Lagrangian differs from the
generic case: maximal symmetry forbids Higgs corrections

for the effective kinetic terms of the top quark which source
the UV divergence and are often the leading sources for the
quadratic term in the Higgs potential. Although maximal
symmetry is simple, elegant, and can have many model
building applications, the exact nature of maximal sym-
metry and its emergence in the low-energy effective action
have remained somewhat mysterious.
In this Letter, we show that the origin of maximal

symmetry is actually very simple: it is simply an enhanced
global symmetry of the composite sector. Generically
composite Higgs models are based on a coset G=H
corresponding to the G → H symmetry breaking pattern
and the composite sector only has an H symmetry.
Whenever H is enhanced to G we will obtain a maximally
symmetric model. After explaining the basic principles
behind maximal symmetry we illustrate them by construct-
ing the simplest two site models. We show that maximal
symmetry can be easily enforced by the gauge symmetries of
the model, indicating that maximal symmetry is secretly a
remnant of some of the gauge symmetries broken at higher
energies. We also discuss the realization of maximal
symmetry in warped extra dimensional models. Note that
our second implementation (“minimal maximal symmetry”)
is a brand new setup that has never been discussed before.
We finally briefly discuss the structure of the Higgs potential
and find that a light Higgs can be obtained without light top
partners in the model with minimal maximal symmetry.
Maximal symmetry is the enhancement of the sponta-

neously broken G=H symmetry back to the full G in some
sector of the composites. Generically composites form
representations of the unbroken group H, and the original
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G symmetry is not implemented in the composite sector. In
the most general situation the composites do not even have
to fill out a complete G representation. There may,
however, be sectors of composite fields (for example,
the fermionic top partners) where the composites them-
selves still form a complete G multiplet, hence the
composite sector may have an emergent enhancedG global
symmetry. This enhanced global symmetry is maximal
symmetry, which can play an important role in softening
and enforcing particular structures on the induced Higgs
potential. While the effects of maximal symmetry are
similar to collective breaking usually employed in
composite Higgs models, conceptually it is quite different
and also has distinct consequences. Collective breaking is
an ingenious mechanism for softening the divergences of
the Higgs potential by ensuring that one needs several
different couplings turned on simultaneously to fully break
the global symmetry protecting the Higgs boson. Maximal
symmetry on the other hand is a true unbroken global
symmetry of (a sector) of the theory, and it is this unbroken
symmetry that will ensure a finite Higgs potential and
nontrivial relations among the various terms in it (leading to
a reduced tuning). We will see in the concrete examples
below how maximal symmetry is explicitly implemented
and how its effects differ from collective breaking in N-site
models [19,20]. In particular we will see that maximal
symmetry can easily be used in a two-site model rendering
the Higgs potential finite, while for ordinary collective
breaking one needs at least 3 sites. We will also show the
effect of maximal symmetry in removing one of the form
factors of the low-energy effective theory (which is usually
responsible for the log divergences in the deconstructed
models), and how the absence of this form factor will imply
that these models have significantly less tuning than
traditional composite Higgs models.
For concreteness we will consider the G ¼ SOð5Þ and

H ¼ SOð4Þ symmetry breaking pattern corresponding to
the minimal choice that incorporates a custodial symmetry
for the standard model (SM). The Higgs field is contained
in the nonlinear sigma field U which transforms as [21,22]

U → gUh†; ð1Þ
where g ∈ G is an element of the linearly realized full G
symmetry while h ∈ H is the nonlinearly realized shift
symmetry. Thus the U field can also be interpreted as the
field connecting SOð5Þ symmetry of the elementary sector
with the spontaneously broken SOð5Þ symmetry of
the composite sector: it transforms under an SOð5Þel ×
SOð5Þco symmetry, where the composite sector breaks
SOð5Þco to SOð4Þ. Either of SOð5Þel and SOð5Þco is
sufficient to fully protect the pNGBs from acquiring any
potential. We thus need to break both SOð5Þ’s but in such a
manner that some remnant bigger than SOð4Þ is left over.
There are two simple options emerging, depending on the
embedding of the SM fermions into the global symmetries.

1. Both the left-handed top doublet qL and the right
handed top tR are embedded into SOð5Þel. This is the
standard assumption, corresponding to the SM fermions
being mainly elementary. The embedding of these fields
into incomplete SOð5Þel multiplets breaks the elementary
symmetry, but does not say anything about the structure of
the composite sector. The enhancement of the global
symmetries will depend entirely on the structure of the
composite fields. To achieve our goal we need to preserve
an SOð5Þ symmetry that does not coincide with the original
SOð5Þco. The original proposal of maximal symmetry is
exactly that: an SOð5Þco0 symmetry that appears in the
composite sector, where the SOð5Þco0 is not identical
to SOð5Þco.
2. The second option is when qL is embedded in the

elementary sector, but tR in the composite sector. Since tR is
an SUð2ÞL singlet this can be easily achieved by simply
making tR a singlet under SOð4Þco. In this case already the
embedding of qL and tR will have the right symmetry
breaking pattern of SOð5Þel × SOð5Þco to ensure that a
Higgs potential will be generated. If the remaining com-
posites maintain any form of SOð5Þ symmetry [which now
could also coincide with the original SOð5Þco] a softening
of the UV behavior of the Higgs potential is expected. We
call this new possibility the minimal realization of maximal
symmetry.
Next let us explain how maximal symmetry restricts the

form of the low-energy Lagrangian, leading to the elimi-
nation of the Higgs dependence of the effective kinetic
terms. Consider first the case from Ref. [18] when both qL
and tR are embedded in the elementary sector. For
concreteness we assume that they are both in fundamentals
of SOð5Þel transforming as ΨqL → gelΨqL and ΨtR →
gelΨtR . We also assume that the coset G=H is a so-called
“symmetric space” [which means that there exists a Higgs-
parity operator V determining the pattern of the breaking of
SOð5Þco]. In this case one can always construct the linearly
realized pNGB matrix Σ0 ¼ UVU† ¼ U2V, which trans-
forms linearly under the full set of global symmetries
Σ0 → gelΣ0g†el. By integrating out the composite sector, the
effective Lagrangian for the elementary fields invariant
under SOð5Þel will be [18]

Leff ¼ Ψ̄qL=p½ΠL
0 ðpÞ þ ΠL

1 ðpÞΣ0�ΨqL − Ψ̄qLM
t
1ðpÞΣ0ΨtR

þ Ψ̄tR =p½ΠR
0 ðpÞ þ ΠR

1 ðpÞΣ0�ΨtR þ H:c:; ð2Þ

where the form factors ΠL=R
0;1 ðpÞ and Mt

1 encode the
effects of the composite sector. One can then trace back
the action of the composite symmetries in the Lagrangian
(2) by noting that the dressed elementary fields U†ΨqL;tR
transform under the chirally enhanced composite
global symmetries SOð5Þco;L × SOð5Þco;R as U†ΨqL;tR →
gco;L;RU†ΨqL;tR . The Higgs dependent kinetic term
Ψ̄qL=pΣ

0ΨqL can be rewritten in terms of the dressed fields
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as ðΨ̄qLUÞVðU†ΨqLÞ and is only invariant under the
SOð4Þco symmetry, implying ΠL;R

1 ¼ 0. It is the vanishing
of these form factors that will imply the softening of the
Higgs potential and also the reduced tuning in these
models. Note that these form factors generically do not
vanish in composite Higgs models with collective breaking.
However Mt

1 term Ψ̄qLΣ
0ΨtR ¼ ðΨ̄qLUÞVðU†ΨtRÞ breaks

chiral composite symmetries to maximal symmetry
SOð5Þco0 defined by gco;LVg

†
co;R ¼ V. We see that the

SOð5Þco0 global symmetry can forbid the Higgs dependent
kinetic terms and allow the effective Yukawa coupling. For
more details on the cancellation on the structure of the
model and the cancellation of divergences, see the
Supplemental Material [23].
Let us now consider the second possibility, not discussed

so far in the literature, which we will refer to as the minimal
maximal symmetry. In this case qL is still embedded in the
elementary sector, however, tR is now assumed to be
transforming under the global symmetries of the composite
sector. For simplicity we will again assume that qL and tR
are embedded into fundamental representations of SOð5Þel
and SOð5Þco respectively, transforming as ΨqL → gelΨqL
and ΨtR → gcoΨtR with gel ∈ SOð5Þel and gco ∈ SOð5Þco.
Since the composite sector must be H ≡ SOð4Þ ⊂ SOð5Þco
invariant, ΨtR should be a full H representation to keep H
unbroken. After integrating out the composite sector the
general form of the effective Lagrangian invariant under the
SOð5Þel global symmetry can be written as

Leff ¼ Ψ̄qL=p½ΠL
0 ðpÞ þ ΠL

1 ðpÞΣ0�ΨqL þ Ψ̄tR =pΠ
R
0 ðpÞΨtR

þ Ψ̄qLM
t
1ðpÞUΨtR þ H:c:; ð3Þ

differing slightly from Eq. (2): the form factor ΠR
1 is

automatically vanishing, while the Mt
1 mass term has a

U insertion connecting the elementary and composite
sectors, rather than the Σ0. Following the discussion in
the first case, if any SOð5Þ subgroup of the chirally
enhanced composite global symmetries, defined as
U†ΨqL → gco;LU†ΨqL and ΨtR → gco;RΨtR , is unbroken,
the form factor ΠL

1 will again be forbidden. However,
theMt

1 term is automatically invariant under this symmetry
and will be allowed. Note that in some sense this scenario is
even more powerful than the traditional implementation of
maximal symmetry. For the minimal maximal symmetry,
however, any SOð5Þ subgroup of the chiral global sym-
metries is sufficient—the modified Mt

1 term will always be
left invariant. However the embedding of the qL and tR into
ΨqL and ΨtR will now explicitly break both the elementary
and the composite global symmetries, and a Higgs potential
will be generated.
We will present the simplest two site models correspond-

ing to both implementations of maximal symmetry dis-
cussed above. These also represent the simplest realistic

finite EWSB models. One of the main takeaways from
these models is that gauge symmetry can be used to enforce
the relations needed for the appearance of maximal
symmetry, and no special tuning or coincidence of param-
eters is needed to achieve the maximally symmetric limit.
Ordinary maximal symmetry.—In the two-site model

with maximal symmetry, the global symmetry is
SOð5Þ1 × SOð5Þ2, and the link field U1 which breaks it
to the diagonal subgroup, is in the bi-fundamental repre-
sentation of the global symmetry. The SUð2ÞL ×Uð1ÞY
subgroup of SOð5Þ1 and the entire SOð5Þ2 are fully gauged,
as shown in the left panel in Fig. 1. A scalar field with VEV
V ¼ diagð1; 1; 1; 1;−1Þ at the second site is introduced to
break the gauge symmetry at the second site to SOð4Þ. The
linear pNGB field Σ corresponding to this breaking can be
parametrized as Σ ¼ U0VU0†, where U0 is nonlinear sigma
field of coset space SOð5Þ2=SOð4Þ. Gauging the global
symmetries will eat some of the pNGBs such that we are
left with a single set of pNGBs corresponding to the
SOð5Þ1=SOð4Þ coset. These uneaten NGBs can be
described by the linear sigma field Σ0 ¼ UVU† with
U ¼ U1U0.
In the fermion sector, we introduce the SM fermions tL,

tR, bL at the first site, while a SOð5Þ2 Dirac fermion
multipletΨ at the second site. The gauge symmetry SOð5Þ2
guarantees an enhanced SOð5Þ2L × SOð5Þ2R chiral global
symmetry for Ψ in the limit of vanishing Dirac mass terms.
On the other hand its Yukawa coupling to Σ breaks it to
SOð5Þ20 which keeps the VEV V invariant gLVg

†
R ¼ V. To

obtain maximal symmetry, SOð5Þ20 should be preserved,
which requires the mass of Ψ is only from the
SOð5Þ2=SOð4Þ breaking, which could be enforced by a
discrete Z2 or Z3 symmetry. The general fermion inter-
actions read

Lf ¼ q̄Li=DqL þ Ψ̄i=DΨþ t̄Ri=DtR − ϵLΨ̄qLU1ΨR

−MΨ̄LΣΨR − ϵRΨ̄LU
†
1ΨtR þ H:c:; ð4Þ

where Ψ is in the 5 representation of SOð5Þ2 gauge
symmetry and ΨqL ¼ ðibL; bL; itL;−tL; 0Þ=

ffiffiffi
2

p
, ΨtR ¼

ð0; 0; 0; 0; tRÞ are embedded in the 5 representation of
global SOð5Þ1. If we turn off any of the three Yukawa

FIG. 1. Moose diagrams for the two-site models. Left, ordinary
maximal symmetry; Right, minimal maximal symmetry.
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couplings above, the Higgs shift symmetry is restored,
which indicates that the only dependence on the Higgs field
will be yt ∼ ϵLϵRM and the ΠL;R

1 ∼ ϵ2L;R form factors in
Eq. (2) vanish. Thus the Higgs potential is finite at the one-
loop level.
Minimal maximal symmetry.—The two site model can

also easily realize the minimal implementation of maximal
symmetry described above. For this we can choose the
same basic model with two sites and same group structure.
The main difference will be that the singlet top tR will be
introduced at the second site SOð5Þ2 as a gauge singlet, as
shown in the right panel in Fig. 1. In addition the
SOð5Þ2=SOð4Þ breaking will this time be via a VEV V ¼
ð0; 0; 0; 0; 1Þ in the vector 5 of SOð5Þ2 with its correspond-
ing sigma field H0 ¼ U0V. The uneaten NGBs are still in
the coset SOð5Þ1=SOð4Þ, which can again be described by
H ¼ UV and U ¼ U1U0. The bare mass term of Dirac
fermion Ψ can be introduced to breaks its chiral symmetry
to SOð5Þ2 as maximal symmetry. The most general
Lagrangian then is

Lf ¼ q̄Li=DqL þ Ψ̄i=DΨþ t̄Ri=DtR

− ϵLΨ̄qLU1ΨR −MΨ̄LΨR − ϵRΨ̄LH0tR þ H:c: ð5Þ
Following the same analysis, the Higgs potential is still
dependent on the product of mixing Yukawa couplings and
Dirac mass. Again we can see that because there is a SOð5Þ
global symmetry in the Ψ sector the effective kinetic terms
of SM field are independent on Higgs field.
Maximal symmetry from extra dimensions.—These

models can be easily promoted to full extra dimensional
theories by identifying the first site with a UV brane and the
second site with an IR brane. We can use the standard
warped extra dimensional model based on a slide of AdS5
ending on UV and IR branes, and a bulk SOð5Þ ×Uð1ÞX
gauge group as in the holographic MCHM [16]. The key
new ingredient is to keep the interactions in the fermion
sector at the IR brane invariant under the global symmetry
SOð5Þco0 [the bulk gauge symmetry automatically enforces
that the bulk multiplets for the top doublet and singlet both
have a global SOð5Þ symmetry in the bulk]. To ensure this,
we must impose SOð5Þ preserving boundary conditions on
the IR brane for the fermions. For example, if we embed the
quarks into 5’s of SOð5Þ, we should impose allþ boundary
conditions for the LH fermions in the 5 that contains the
SM LH doublet, while for the 5 containing the SM RH
fermions we should impose the þ boundary conditions for
the RH fields. To ensure the proper fermions masses via the
Higgs mechanism we still need to add some brane localized
masses. To ensure that the remaining global symmetry is
SOð5Þco0 we need to twist these boundary masses using the
Higgs parity operator V:

Smix ¼
1

g25

Z
IR
d4x

ffiffiffiffiffiffiffiffiffiffi
gðindÞ

q
m̃ðΨ̄1LVΨ2R þ H:c:Þ; ð6Þ

where Ψ1 is the bulk fermion containing the SM LH
doublets, and Ψ2 contains a RH SM fermion. This con-
struction will ensure the presence of maximal symmetry
and all its consequences on the Higgs potential. A small
variation of this model can also implement the minimal
maximal symmetry presented above.
Finally, we explain the utility of maximal symmetry in

achieving a phenomenologically viable Higgs potential.
It is usually parametrized, using the variable sh≡
sin½hhi=f� ≪ 1, and expanded to leading order as

VðhÞ ¼ −ðγf − γgÞs2h þ βfs4h; ð7Þ

where γf, βf are the contributions from the top sector and
βg is the contribution from the gauge sector. If γf − γg
and βf are positive, the Higgs will acquire a VEV,
ξ≡ s2h ¼ ðγf − γgÞ=ð2βfÞ. To achieve a small ξ, the coef-
ficient of the s2h term has to be suppressed via cancellations.
The tuning measuring this cancellation is around Δ≈
γf=ðξβfÞ.
In composite Higgs models based on deconstruction or

Holographic Higgs models the Higgs potential is usually
finite. However, γf and βf are from the leading and
subleading contributions of the top effective kinetic terms
so they will have a different dependence on the top Yukawa
coupling yt: γf ∼OðytÞ and βf ∼Oðy2t Þ. It will result in
double tuning for a viable Higgs potential around Δ ∼
ðgf=ytÞ1=ξ [24], where gf ≡Mf=f and Mf is the top
partner mass.
In the CHMwith maximal symmetry, the Higgs potential

from the top sector originates entirely from the top Yukawa
coupling and is finite. To get a small ξ, the main source of
tuning is from the cancellation between γf and γg. In the
original maximally symmetric model [18] γf and βf are of
the same order in the top Yukawa coupling, thus the tuning
is minimal, Δ ∼ 1=ξ. Numerically a tuning of Δ ≈ 13 is
needed to obtain the correct Higgs mass with ξ ¼ 0.05,
Mf > 1.5 TeV and vector partners heavier than 2.5 TeV.
Experimental verification of the predictions of this model
has been studied in Ref. [26].
We want to emphasize that in all of the CHMs discussed

so far in this section, the Higgs mass explicitly depends on
the top partner mass, implying that the top partner mass
must be light, around gf ≈ 1, to obtain a 125 GeV Higgs.
However for the case of minimal maximal symmetry this
situation changes. Because of the different choice of
embeddings the effective top Yukawa term is proportional
to sh (vs proportional to s2h in ordinary maximal sym-
metry), as a result of which γf ∼Oðy2t Þ and βf ∼Oðy4t Þ.
Although there is still double tuning, since βf is at Oðy4t Þ,
βf ∼ y4t f4=ð4πÞ2, it is not sensitive to the top partner mass,
which leads to the insensitivity of the Higgs mass to top
partner mass m2

h ¼ 8βfξ=f2 ∼ y4t hhi2=ð2π2Þ. While in the
simplest models the Higgs usually turns out to be somewhat
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light (mh ≈ 100 GeV for Mf ≈ 10f), one can be easily
enhance the Higgs mass while still significantly sup-
pressing the tuning by producing an independent Higgs
quartic coupling (for a simple recent proposal see
Refs. [27,28]). Numerically in such a model the tuning
is Δ ≈ 40 to achieve the realistic Higgs potential for
ξ ¼ 0.1, top partners and vector partners heavier than 2
and 4 TeV, respectively, which is usually much smaller than
that in a traditional composite Higgs model [24]. For
numerical results see the Supplemental Material [23].
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