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The calculation of work distributions in a quantum many-body system is of significant importance and
also of formidable difficulty in the field of nonequilibrium quantum statistical mechanics. To solve this
problem, inspired by the Schwinger-Keldysh formalism, we propose the contour-integral formulation for
work statistics. Based on this contour integral, we show how to do the perturbation expansion of the
characteristic function of work (CFW) and obtain the approximate expression of the CFW to the second
order of the work parameter for an arbitrary system under a perturbative protocol. We also demonstrate the
validity of fluctuation theorems by utilizing the Kubo-Martin-Schwinger condition. Finally, we use
noninteracting identical particles in a forced harmonic potential as an example to demonstrate the
powerfulness of our approach.
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Introduction.—In the past 25 years or so, the development
of stochastic thermodynamics and thediscoveryoffluctuation
theorems have revolutionized our understanding about non-
equilibrium thermodynamics [1–4]. In these studies, a key
quantity is the probability distribution of work in an arbitrary
nonequilibriumprocess,which encodes essential information
about the nonequilibrium process analogous to the partition
function encoding essential information about an equilibrium
state [5–8].Foraclosedquantumsystem,thetrajectoryworkis
defined as the difference between the results of the projective
measurements over the system’s energy before and after the
driving protocol [9–11]. Accordingly, the characteristic func-
tion of work [CFW; the Fourier transform of the work
distribution PðwÞ] reads [11]

χðvÞ ¼
Z

dwPðwÞeivw ¼ Tr½Û†ðtÞeivĤðtÞÛðtÞe−ivĤð0Þρ̂�;

ð1Þ

where ρ̂ denotes the initial state, Ĥð0Þ and ĤðtÞ denote the
Hamiltonians before and after the driving protocol, and ÛðsÞ
denotes the time-evolution operator corresponding to a time-
dependentHamiltonian ĤðsÞ; s ∈ ½0; t�.TheCFWisapower-
ful tool to study the nonequilibrium physics of a quantum
system, since it appears not only in stochastic thermodynam-
ics, but also in Loschmidt echoes [12,13], Kibble-Zurek
mechanism [14], dynamical quantum phase transitions
[15,16], andmany other fields. Hence, to efficiently calculate
the CFW becomes one of the most important problems in
this field.
Nevertheless, it is usually a very challenging task to

calculate the CFW for an arbitrary nonequilibrium

protocol, especially for quantum many-body systems,
due to the complicated nonequilibrium dynamics. In the
literature, there are a few results about the CFW, but mostly
focusing on special models and are studied case by case
[8,17–26]. For example, in Refs. [8,26], the perturbation
expansion is applied to the calculation of the work
distributions of a quantum scalar field for perturbative
protocols. For quantum systems described by quadratic
Hamiltonians, Ref. [27] proposed a general method for
solving the CFW under an arbitrary driving protocol by
utilizing the group-representation theory. Nevertheless, for
a general model beyond the quadratic Hamiltonian, no
efficient ways to solve the CFW have been reported so far.
In this Letter, in order to address the above problem, we

propose the nonequilibrium Green’s function’s approach to
the calculation of the CFW. Based on the Schwinger-
Keldysh formalism [28,29], nonequilibrium Green’s func-
tions provide a useful framework to handle problems of
time-dependent Hamiltonians. For example, it is a standard
tool in deriving the Landauer formula in quantum transport
[30]. Also, it has been applied to the calculation of the full
counting statistics of heat [31]. Inspired by this formalism,
we propose the contour for work statistics and define the
work functional along the modified contour. In this way, we
are able to calculate the CFW of an arbitrary system for a
perturbative protocol by the perturbation expansion. Also,
to the second order of the expansion, we obtain the general
expression of the CFW and demonstrate the fluctuation
theorems by utilizing the Kubo-Martin-Schwinger condi-
tion [28].
We also notice that Refs. [32,33] discussed the work

statistics and fluctuation theorems based on the Schwinger-
Keldysh formalism. Different from our modified contour
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for work statistics, they defined the modified Hamiltonian
on the usual Schwinger-Keldysh contour. In contrast to
their method, where the explicit expression of the modified
Hamiltonian is usually difficult to obtain, the correlation
functions in our Letter (see below) can be more readily
calculated, which significantly simplifies the calculation of
the CFW.
From the Schwinger-Keldysh contour to the contour for

work statistics.—For a time-dependent quantum system
ĤðsÞ ¼ Ĥ0 þ λðsÞĤ1, s ∈ ½0; t� with the work parameter
λðsÞ and the canonical initial state ρ̂ ¼ e−βĤð0Þ=Tr½e−βĤð0Þ�
[β ¼ ðkBTÞ−1 is the inverse temperature], the expectation
value of an observable Ô at time t is Tr½ρ̂IðtÞÔIðtÞ�, where
the time-dependent operators are in the interaction picture,
ÔIðtÞ ¼ eði=ℏÞĤ0tÔe−ði=ℏÞĤ0t, ρ̂IðtÞ ¼ eði=ℏÞĤ0tÛðt; 0Þ×
ρ̂ Ûð0; tÞe−ði=ℏÞĤ0t. In the Schwinger-Keldysh formalism,
this quantity is related to a contour with three directed
branches, called the Schwinger-Keldysh contour [see
Fig. 1(a)]. Thus, the expectation value can be cal-
culated by a contour integral Tr½ρ̂IðtÞÔIðtÞ� ¼
hT C½ÔIðtÞe−ði=ℏÞ

R
C
dsλðsÞĤI

1ðsÞ�i=hT C½e−ði=ℏÞ
R

−iℏβ
0

dsλ0Ĥ
I
1ðsÞ�i,

where h·i ¼ Tr½·e−βĤ0 �=Tr½e−βĤ0 �, the integral is along the
contour C, and T C indicates ordering along the same
contour [e.g., a < b < c in Fig. 1(a)] [28,29].
Inspired by this formalism, we treat both the time-

evolution operators and the exponential operators in
Eq. (1) as the directed branches of a modified contour
C0 [see Fig. 1(b)]. Then the contour-integral formulation of
the CFW reads

χðvÞ ¼ hT C0 ½e− i
ℏ

R
C0 dsλC0 ðsÞĤ

I
1ðsÞ�i

hT C0 ½e− i
ℏ

R
−iℏβ
0

dsλ0Ĥ
I
1ðsÞ�i

; ð2Þ

where the integral, the time-ordered operator T C0 and the
work parameter λC0 ðtÞ are all along the new contour C0.
Hence, we call the new contour C0 the contour for work
statistics, which is also consistent with the Ramsey inter-
ferometry [34] and the work statistics in the path integral
formalism [35]. Moreover, Eq. (2) can be rewritten as
follows:

χðvÞ ¼ hT C0 ½eði=ℏÞ
R

t

0
ds
R

ℏv

0
dr_λðsÞĤI

1ðs−rÞ�T C0 ½e−ði=ℏÞ
R

−iℏβ
0

dsλ0Ĥ
I
1ðsÞ�i

hT C0 ½e− i
ℏ

R
−iℏβ
0

dsλ0Ĥ
I
1ðsÞ�i

≡ hT C0 ½eivŴ �i0; ð3Þ

where _λðsÞ ¼ dλðsÞ=ds and h·i0 ¼ Trf·T C0 ½e−ði=ℏÞ
R

−iℏβ
0

dsλ0Ĥ
I
1ðsÞ�g=TrfT C0 ½e−ði=ℏÞ

R
−iℏβ
0

dsλ0Ĥ
I
1ðsÞ�g. Here, we call Ŵ ¼

ð1=ℏvÞ R t
0 ds

R
ℏv
0 dr_λðsÞĤI

1ðs − rÞ the work functional (similar to the work functional defined in Ref. [35]). In the
classical limit (ℏ → 0), the time-ordered operator T C0 disappears and the work functional Ŵ just corresponds to the classical
trajectory work W½xðsÞ; pðsÞ� ¼ R

t
0 ds_λðsÞH1ðxðsÞ; pðsÞ; sÞ [36]. However, this does not mean that work is an

observable [11]. Actually, the work functional Ŵ is the combination of the operators in different branches of C0. Hence,
it is nonsense to consider the eigenstates or eigenvalues of Ŵ due to T C0 .

FIG. 1. Complex plane of time s. (a) The Schwinger-Keldysh contour C. Contour ordering: a < b < c. (b) The contour for work
statistics C0 [λC0 ðsÞ ¼ λ0 in the last two branches]. The red lines denote the exponential operators in Eq. (1). We have assumed v < 0 in
(b), which does not influence the calculation of the CFW.

PHYSICAL REVIEW LETTERS 124, 240603 (2020)

240603-2



Calculating work statistics based on the perturbation
expansion.—The exponential operator in Eq. (2) can be
expanded as

χðvÞ¼ 1þP∞
n¼1 ð

Q
n
l¼1

R
C0 ds̄lÞGðs1;…;snÞ

1þP∞
n¼1 ð

Q
n
l¼1

R −iℏβ
0 ds̄lÞGðs1;…;snÞ

; ð4Þ

where ds̄l ¼ dslλC0 ðslÞθC0 ðsl − slþ1Þ is an abbreviation,

Gðs1;…; snÞ ¼
�
−i
ℏ

�
n
hĤI

1ðs1Þ � � � ĤI
1ðsnÞi ð5Þ

is the n-point correlation function, θC0 ðs − s0Þ is the contour
step function [28], and we set θC0 ðsn − snþ1Þ≡ 1. A more
convenient notion is the series of the logarithm of χðvÞ,
called the cumulant CFW (see Supplemental Material
[37]),

ln χðvÞ ¼
X∞
n¼1

�Yn
l¼1

Z
C0
ds̄l −

Yn
l¼1

Z
−iℏβ

0

ds̄l

�
Gcðs1;…; snÞ;

ð6Þ

where

Gcðs1;…; snÞ ¼
�
−i
ℏ

�
n
hĤI

1ðs1Þ � � � ĤI
1ðsnÞic ð7Þ

is the n-point cumulant correlation function (also called
Ursell function) [38,39]. For the perturbative driving
protocol λðsÞ, Eqs. (4) and (6) are the perturbation
expansion of the work statistics. Usually, we are able to
calculate the correlation functions by Wick’s theorem and
Feynman diagrams [40]. Here in Gcðs1;…; snÞ, only
connected diagrams are included.
After a straightforward calculation (see Supplemental

Material [37]), to the second order of λðsÞ, we obtain the
approximate expression of the perturbation expansion of
ln χðvÞ for a perturbative protocol

lnχðvÞ¼ ivðλ1−λ0ÞhĤ1icþ
Z

∞

−∞

dω
2π

1−eiωℏv

ω2
AðωÞG>

c ðωÞ

þ iℏvðλ21−λ20Þ
Z

∞

−∞

dω
2π

G>
c ðωÞ
ω

þO½λðsÞ3�: ð8Þ

Here, the first term on the rhs of Eq. (8) represents the
average work done to the first order of λðsÞ. The second
term is called the “speed” term, since AðωÞ depends on _λðsÞ
by

AðωÞ ¼
����
Z

t

0

ds_λðsÞeiωs
����
2

: ð9Þ

It encodes the information about the nonequilibrium pro-
tocols λðsÞ. The third term is called the “boundary” term,

since only the initial and the final value of λðsÞ appear in
this term. Meanwhile, the information about the
Hamiltonians Ĥ0 and Ĥ1 is encoded in the cumulant
greater correlation function G>

c ðωÞ

G>
c ðωÞ ¼

Z
∞

−∞
dsG>

c ðsÞeiωs;

G>
c ðsÞ ¼

�
−i
ℏ

�
2

hĤI
1ðsÞĤI

1ð0Þic: ð10Þ

We would like to emphasize that Eq. (8) is one of the main
results in our Letter. It is a general result of the work
statistics because it is valid for arbitrary Ĥ0 and Ĥ1, and
also arbitrary perturbative protocols λðsÞ.
In the following, we analyze the properties of the CFW

based on our results [Eq. (8)]. Above all, the CFW satisfies
the normalization condition [ln χð0Þ ¼ 0]. As for the
fluctuation theorems, let us first introduce the backward

process of ĤðsÞ: ĤBðsÞ ¼ Ĥ0 þ λðt − sÞĤ1, ρ̂B ¼
e−βĤBð0Þ=Tr½e−βĤBð0Þ� [41]. Then, the perturbation expan-
sion of ln χBðvÞ to the second order of λðsÞ can be written as

lnχBðvÞ¼−ivðλ1−λ0ÞhĤ1ic
þ
Z

∞

−∞

dω
2π

1−eiωℏv

ω2
AðωÞG>

c ðωÞ

− iℏvðλ21−λ20Þ
Z

∞

−∞

dω
2π

G>
c ðωÞ
ω

þO½λðsÞ3�: ð11Þ

Thus, according to the Kubo-Martin-Schwinger condition
[28], G>

c ðs − iℏβÞ ¼ G>
c ð−sÞ; e−βℏωG>

c ðωÞ ¼ G>
c ð−ωÞ,

and AðωÞ is an even function, from Eqs. (8) and (11)
we obtain the following relation:

−kBT ln
χð−vþ iβÞ

χBðvÞ
¼ ðλ1 − λ0ÞhĤ1ic þ ℏðλ21 − λ20Þ

×
Z

∞

−∞

dω
2π

G>
c ðωÞ
ω

þO½λðsÞ3�; ð12Þ

where the first and second terms on the rhs of Eq. (12) are
exactly the perturbation expansion of the free energy differ-

ence ΔF ¼ Fλ1 − Fλ0 ¼ −kBT ln½Trðe−βĤðtÞÞ=Trðe−βĤð0ÞÞ�
to the first and the second order of λðsÞ, respectively
[38,43]. After taking the inverse Fourier transform of
Eq. (12), we obtain the relation between the work distribu-
tions of the forward and the backward processes [PðwÞ and
PBðwÞ] to the second order of λðsÞ

PðwÞ
PBð−wÞ

¼ eβðw−ΔFÞ þO½λðsÞ3�; ð13Þ
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which is nothing but the Crooks fluctuation theorem [42,44]
to the second-order perturbation expansion of λðsÞ. As a
result, the Jarzynski equality [36] to the second-order
perturbation expansion can be obtained as a straightforward
corollary of Eq. (13) [2].
Example: Noninteracting identical particles in a forced

harmonic potential.—To calculate the CFW of a quantum
many-body system in an arbitrary nonequilibrium process
is an extremely cumbersome task. However, for those
perturbative driving protocols, our method based on the
nonequilibrium Green’s function provides a unified and
powerful tool to solve this long-standing problem. We
demonstrate our results by considering the following time-
dependent Hamiltonian:

Ĥ0 ¼
XN
i¼1

p̂2
i

2m
þm

2
ðω2

xx̂2i þ ω2
yŷ2i þ ω2

z ẑ2i Þ;

Ĥ1 ¼ ωz

ffiffiffiffiffiffiffi
2m

p XN
i¼1

ẑi; ð14Þ

which describes noninteracting spinless identical particles
in a three-dimensional harmonic potential driven along the
z direction with the particle mass m, the total particle
number N, and the frequencies along three directions ωx,
ωy, and ωz. For simplicity, we choose ωx ∼ ωy ∼ ωz. This
system is a well-known physical model in statistical
physics (e.g., see Ref. [45]). For bosons, it is a good
model to study Bose-Einstein condensation in noninteract-
ing trapped gases [45,46]. The transition temperature kBTc

equals ℏωg½N=ζð3Þ�1=3, where ωg ¼ ðωxωyωzÞ1=3 and ζðsÞ
is the Riemann zeta function. Moreover, the proper
thermodynamic limit for these systems is obtained by
letting N → ∞ and ωg → 0, while keeping the product
Nω3

g as a constant. We would like to emphasize that λðsÞ
does not depend on N. As a result, for various N and the
same λðsÞ, we always have ΔF=Fλ¼0 ∼OðN0Þ for the
canonical ensemble.
After the second quantization, Ĥ0 and Ĥ1 read

Ĥ0 ¼
X
k

εkâ
†
kâk;

Ĥ1 ¼
ffiffiffiffiffiffiffiffi
ℏωz

p X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kz þ 1

p ðâ†kâk̃ þ â†
k̃
âkÞ; ð15Þ

where k ¼ ðkx; ky; kzÞ ∈ N3, k̃ ¼ ðkx; ky; kz þ 1Þ, and
εk ¼ ℏðkxωx þ kyωy þ kzωzÞ þ ε0 is the single-particle-
state energy, ε0 ¼ ℏðωx þ ωy þ ωzÞ=2. For later conven-
ience, let us introduce the following notations: The
total particle number operator N̂ ¼ P

k n̂k ¼ P
k â

†
kâk

with its eigenstates jfnkgi ¼⊗k jnki; for the canonical
ensemble, the density matrix ρ̂N ¼ δðN̂ − NÞe−βĤ0=ZN ,

where ZN¼Tr½δðN̂−NÞe−βĤ0 �, hfnkgjδðN̂ − NÞjfn0kgi ¼
δfnkg;fn0kgδN;

P
k
nk
. Here δ·;· is the Kronecker delta function;

the mean occupation number in the canonical ensemble
n̄kðNÞ ¼ Tr½ρ̂Nn̂k�; for the grand canonical ensemble,
the density matrix ρ̂μ ¼ e−βðĤ0−μN̂Þ=Zμ, where

Zμ ¼ Tr½e−βðĤ0−μN̂Þ� ¼ Q
kð1 − γαe−βεkÞ−γ , γ ¼ 1;−1 for

bosons and fermions, respectively; the fugacity α ¼ eβμ;
the mean occupation number in the grand canonical
ensemble n̄kðμÞ ¼ Tr½ρ̂μn̂k� ¼ 1=½eβðεk−μÞ − γ�. In addi-
tion, quantities in these two ensembles are related by the
fugacity expansions [45]

Zμ ¼ 1þ
X∞
N¼1

αNZN;

Zμn̄kðμÞ ¼
X∞
N¼1

αNZNn̄kðNÞ: ð16Þ

Similarly, we obtain the relation between the characteristic
functions of work in these two ensembles

ZμχμðvÞ ¼ 1þ
X∞
N¼1

αNZNχNðvÞ: ð17Þ

Thus, according to Eq. (10) and Wick’s theorem in the
grand canonical ensemble, we obtain the cumulant greater
correlation function in the grand canonical ensemble

G>
μ ðωÞ ¼ −

2πωz

ℏ

X
k

ðkz þ 1Þfδðω − ωzÞ

× ½n̄kðμÞ þ γn̄kðμÞn̄k̃ðμÞ�
þ δðωþ ωzÞ½n̄k̃ðμÞ þ γn̄kðμÞn̄k̃ðμÞ�g: ð18Þ

Then from Eqs. (16) and (18), we obtain the cumulant
greater correlation function in the canonical ensemble

G>
NðωÞ ¼ −

2πωz

ℏ

X
k

ðkz þ 1Þfδðω−ωzÞ½n̄kðNÞ þ γξkðNÞ�

þ δðωþωzÞ½n̄k̃ðNÞ þ γξkðNÞ�g; ð19Þ

where we have defined ξkðNÞ as

Zμn̄kðμÞn̄k̃ðμÞ ¼
X∞
N¼1

αNZNξkðNÞ: ð20Þ

Finally, substituting Eqs. (18) and (19) in Eq. (8) and
considering hĤ1ic ¼ 0, we obtain the perturbation expan-
sion of the cumulant CFW to the second order of λðsÞ with
the canonical and the grand canonical initial state,
respectively,
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ln χNðvÞ ≈ −4
X
k

½γðkz þ 1ÞξkðNÞ þ kzn̄kðNÞ� sin
2ðvℏωz=2Þ
ℏωz

AðωzÞ þ N

�
−ivðλ21 − λ20Þ þ

eivℏωz − 1

ℏωz
AðωzÞ

�
; ð21Þ

lnχμðvÞ≈−4
X
k

½γðkzþ1Þn̄kðμÞn̄k̃ðμÞþkzn̄kðμÞ�
sin2ðvℏωz=2Þ

ℏωz
AðωzÞþ N̄ðμÞ

�
−ivðλ21−λ20Þþ

eivℏωz −1

ℏωz
AðωzÞ

�
; ð22Þ

where N̄ðμÞ ¼ P
k n̄kðμÞ is the average particle number in

the grand canonical ensemble. We would like emphasize
that Eqs. (21) and (22) are valid for both bosons and
fermions and arbitrary large N, where previous methods
fail [47].
Based on the analytical solutions of the CFW [Eqs. (21)

and (22)], we study the properties of the work statistics in
several special cases:
(1) Single-particle case (N ¼ 1): In this case,

we have Z1¼
P

ke
−βεk ¼½8sinhðβωx=2Þsinhðβωy=2Þ×

sinhðβωz=2Þ�−1, n̄kð1Þ ¼ e−βεk=Z1, ξkð1Þ ¼ 0 [Eqs. (16)
and (20)] and, accordingly,

ln χ1ðvÞ ¼
−4sin2ðvℏωz=2Þ
ℏωzðeβℏωz − 1Þ AðωzÞ − ivðλ21 − λ20Þ

þ eivℏωz − 1

ℏωz
AðωzÞ: ð23Þ

Actually, Eq. (23) is identical to the exact expression of the
cumulant CFW in Ref. [17], which indicates that, for
N ¼ 1, the contributions from the third or higher orders
of λðsÞ vanish (see the Supplemental Material [37]).
(2) Nondegenerate case (in the thermodynamic limit ε0 ∼

ℏωz ∼ N−1=3 and kBT ≫ N1=3ℏωg): From Eq. (23), we
obtain the classical limit of the cumulant CFW for a single
particle [48]

ln χCL1 ðvÞ ¼ −v2kBTAðωzÞ − iv½λ21 − λ20 − AðωzÞ�: ð24Þ

In the nondegenerate case, we have Z1 ≈ ðkBTÞ3=ðℏωgÞ3,
which is equal to the partition function of a classical
harmonic oscillator, ZN ¼ ZN

1 =N!, Zμ ¼ eαZ1 , n̄kðNÞ ¼
Ne−βεk=Z1, n̄kðμÞ¼αe−βεk , n̄kðμÞn̄k̃ðμÞ≪n̄kðμÞ, ξkðNÞ ≪
n̄kðNÞ (dilute gas). From Eqs. (21) and (22), we obtain the
cumulant characteristic functions of work for many par-
ticles in two ensembles

lnχCLN ðvÞ¼N lnχCL1 ðvÞ; lnχCLμ ðvÞ¼αZ1 lnχCL1 ðvÞ; ð25Þ

which indicates that the particles satisfy Maxwell-
Boltzmann statistics and the contributions from the third
or higher orders of λðsÞ vanish.

The discussions about the CFW in the degenerate case
are shown in the Supplemental Material [37].
Summary.—The CFW is an important quantity to char-

acterize the nonequilibrium process of the time-dependent
quantum systems, especially of quantum many-body sys-
tems. But the calculation of the CFW for quantum many-
body systems has been a long-time conundrum. To over-
come this difficulty, by utilizing the nonequilibrium
Green’s function’s method, we formulate the work statistics
with a contour integral and obtain the series expansion of
the CFW. This method is valid for arbitrary Ĥ0 and Ĥ1, as
well as for arbitrary perturbative work protocols λðsÞ.
Hence, it provides a unified method for the calculation
of the CFW. In this framework, work, although not an
observable, is defined as a functional along the modified
contour. To the second order of the work parameter, the
CFW is expressed as the sum of the first-order term, the
speed term, and the boundary term. Moreover, the fluc-
tuation theorems can be demonstrated by utilizing the
Kubo-Martin-Schwinger condition. As an example, we
calculate the CFW of noninteracting identical particles in
a forced harmonic potential, where previous methods fail.
In the future, we expect to investigate the effects of
relativity and interactions with our methods.
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[42] D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, New J.
Phys. 11, 043014 (2009).

[43] J. Schwinger, Phys. Rev. 82, 664 (1951).
[44] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[45] R. K. Pathria and P. D. Beale, Statistical Mechanics, 3rd ed.

(Elsevier, New York, 2011).
[46] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari,

Rev. Mod. Phys. 71, 463 (1999).
[47] Z. Gong, S. Deffner, and H. T. Quan, Phys. Rev. E 90,

062121 (2014).
[48] Z. Y. Fei, H. T. Quan, and F. Liu, Phys. Rev. E 98, 012132

(2018).

PHYSICAL REVIEW LETTERS 124, 240603 (2020)

240603-6

https://doi.org/10.1103/PhysRevLett.122.240604
https://arXiv.org/abs/cond-mat/0007360
https://arXiv.org/abs/cond-mat/0009244
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/PhysRevLett.101.120603
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevLett.124.170603
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevB.93.104302
https://doi.org/10.1103/PhysRevE.78.011115
https://doi.org/10.1103/PhysRevE.78.011115
https://doi.org/10.1103/PhysRevE.96.042119
https://doi.org/10.1103/PhysRevE.96.042119
https://doi.org/10.1103/PhysRevA.99.063802
https://doi.org/10.1103/PhysRevA.99.063802
https://doi.org/10.1103/PhysRevE.77.021128
https://doi.org/10.1103/PhysRevE.88.042109
https://doi.org/10.1103/PhysRevLett.109.160601
https://doi.org/10.1103/PhysRevB.100.035124
https://doi.org/10.1103/PhysRevE.100.052136
https://doi.org/10.1103/PhysRevA.99.052508
https://doi.org/10.1103/PhysRevA.99.052508
https://doi.org/10.1103/PhysRevX.8.011033
https://doi.org/10.1103/PhysRevX.8.011033
https://doi.org/10.1103/PhysRevResearch.1.033175
https://doi.org/10.1103/PhysRevResearch.1.033175
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
http://www-thphys.physics.ox.ac.uk/talks/CMTjournalclub/sources/Keldysh.pdf
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.99.180601
https://doi.org/10.1103/PhysRevLett.99.180601
https://doi.org/10.21468/SciPostPhys.4.1.008
https://doi.org/10.21468/SciPostPhys.4.1.008
https://doi.org/10.1103/PhysRevE.100.062107
https://doi.org/10.1103/PhysRevLett.110.230601
https://doi.org/10.1103/PhysRevLett.121.040602
https://doi.org/10.1103/PhysRevLett.121.040602
https://doi.org/10.1103/PhysRevE.98.012113
https://doi.org/10.1103/PhysRevLett.78.2690
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.240603
https://doi.org/10.1143/JPSJ.17.1100
https://doi.org/10.1088/1367-2630/11/4/043014
https://doi.org/10.1088/1367-2630/11/4/043014
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/PhysRevE.90.062121
https://doi.org/10.1103/PhysRevE.90.062121
https://doi.org/10.1103/PhysRevE.98.012132
https://doi.org/10.1103/PhysRevE.98.012132

