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We consider the number distribution of topological defects resulting from the finite-time crossing of a
continuous phase transition and identify signatures of universality beyond the mean value, predicted by the
Kibble-Zurek mechanism. Statistics of defects follows a binomial distribution with N Bernouilli trials
associated with the probability of forming a topological defect at the locations where multiple domains
merge. All cumulants of the distribution are predicted to exhibit a common universal power-law scaling
with the quench time in which the transition is crossed. Knowledge of the distribution is used to discuss the
onset of adiabatic dynamics and bound rare events associated with large deviations.
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In a scenario of spontaneous symmetry breaking, the
dynamics of a system across a continuous phase transition
is described by the Kibble-Zurek mechanism (KZM) [1–4].
When the transition is driven in a finite quench time τQ,
the KZM predicts the formation of domains of volume ξ̂D,
where D is the spatial dimension of the system.
Specifically, the KZM uses as input the equilibrium value
of the correlation length ξ and the relaxation time τ.
By varying a control parameter λ across the critical
value λc both quantities exhibit a power-law divergence
as a function of the distance to the critical point
ϵ ¼ ðλ − λcÞ=λc,

ξ ¼ ξ0jϵj−ν; τ ¼ τ0jϵj−zν: ð1Þ

Here, ν is the correlation-length critical exponent and z
denotes the dynamic critical exponent. Both are determined
by the universality class of the system. By contrast, ξ0 and
τ0 are microscopic constants. The KZM states that when
the phase transition is driven in a timescale τQ by a linear
quench of the form ϵ ¼ t=τQ, domains in the broken
symmetry phase spread over a length scale

ξ̂ ¼ ξ0

�
τQ
τ0

� ν
1þzν

: ð2Þ

In D spatial dimensions, the KZM predicts the mean
number of topological defects to scale as

hni ∝
�
τ0
τQ

� Dν
1þzν

: ð3Þ

This power-law behavior with the quench time, initially
derived for classical systems, similarly describes the

dynamics across a quantum phase transition [5–7]. In this
context, the scaling is generally studied in the residual
mean energy and the number of quasiparticles, which
generally differs from the number of topological defects
[8–10]. The KZM has also been extended to a variety of
scenarios, including nonlinear quenches [11–13], long-
range interactions [14–19], and inhomogeneous phase
transitions in both classical [7,20–25] and quantum systems
[13,26–30]. The KZM has been experimentally investi-
gated in a wide variety of platforms reviewed in [7], with
recent tests being performed in trapped ions [31–33],
colloidal monolayers [34], ultracold Bose and Fermi gases
[35–39], and quantum simulators [17,40–43].
Despite this progress, features of the counting statistics

of defects other than the mean number have received scarce
attention. An exception concerns scenarios of U(1) sym-
metry breaking leading to, e.g., the spontaneous current
formation in a superfluid confined in a toroidal trap or a
superconducting ring [3,4,44–47]. While the average cir-
culation vanishes, it was shown that its variance is con-
sistent with a one-dimensional random walk model in
which the number of steps is predicted by the circum-
ference of the ring divided by the KZM length scale ξ̂ [3,4].
It is, however, not clear how to extend this argument to
higher dimensions [8]. Not long ago, the distribution of
kinks formed in a quantum Ising chain driven from the
paramagnetic to the ferromagnetic phase was studied both
theoretically [48] and in the laboratory [49,50].
In this Letter, we focus on signatures of universality

beyond the mean number of topological defects and show
that the full counting statistics of topological defects is
actually universal. In particular, we argue that (i) the defect
number distribution is binomial, (ii) all cumulants are
proportional to the mean and scale as a universal power
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law with the quench rate, and (iii) this power law is fixed by
the conventional KZM scaling. This knowledge allows us
to characterize universal features regarding the onset of
adiabatic dynamics (probability for no defects) and devia-
tions of the number of kinks away from the mean value.
Number distribution of topological defects.—To estimate

the defect number distribution we assume that the number
of domains in the total system is set by

N D ¼ Vol

ξ̂D
; ð4Þ

where Vol denotes the volume of the system. Topological
defects may form at the interface between multiple
domains. For instance, the formation of vortices has been
demonstrated by merging independent Bose-Einstein
condensates [51]. The same principle is at the core of
phase-imprinting methods for soliton formation [52].
Disregarding boundary effects, the number of locations
where a topological effect may be formed is approximately
given by N ¼ N D=f, where f takes into account the
average number of domains that meet at a point.
Alternatively, f can be considered a fudge factor.
We next propose that, at the merging between multiple

domains, a topological defect forms with a probability p.
Similarly, no topological defect will be formed at any such
location with probability 1 − p. The formation of topological
defects at different locations is assumed to be independent
and, in each case, the event of formation can be associated
with a Bernouilli random variable. We thus propose that
the number distribution of topological defects can be
approximated by the binomial distribution with parameters
N and p. This is the discrete probability distribution for
the number of successes (number of topological defects
formed) in a sequence of N independent trials,

PðnÞ ∼ Bðn;N ; pÞ ¼
�
N
n

�
pnð1 − pÞN−n: ð5Þ

Thus, PðnÞ is centered at

hni ¼ pVol

fξ̂D
¼ pVol

fξD0

�
τ0
τQ

� Dν
1þzν

; ð6Þ

in agreement with the KZM scaling. Further, its variance is
set by

VarðnÞ ¼ hn2i − hni2 ¼ Vol

fξ̂D
pð1 − pÞ ∝ τ

− Dν
1þzν

Q ð7Þ

and is always proportional to the mean, as VarðnÞ ¼
ð1 − pÞhni.
High-order cumulants.—To further characterize the

number distribution of defects, it is convenient to introduce
the Fourier transform P̃ðθÞ of PðnÞ, satisfying [53]

PðnÞ ¼ 1

2π

Z
π

−π
dθP̃ðθÞ exp½−iθn� ð8Þ

and known as the characteristic function P̃ðθÞ ¼ E½eiθn�. Its
logarithm is the cumulant generating function. Specifically,
cumulants κq of PðnÞ are defined using the expansion

log P̃ðθÞ ¼
X∞
q¼1

ðiθÞq
q!

κq: ð9Þ

For the binomial distribution, the cumulant generating
function reads

log P̃ðθÞ ¼ hni logð1 − pþ peiθÞ; ð10Þ

whence it follows that all cumulants are proportional to the
mean and thus scale universally with the quench time

κq ∝
�
τ0
τQ

� Dν
1þzν

: ð11Þ

They satisfy the recursion relation κqþ1 ¼ pð1 − pÞdκq=dp
and those with q > 2 signal non-normal features of the
distribution. For instance, κ3=hni ¼ pð1 − pÞð1 − 2pÞ and
κ4=hni ¼ pð1 − pÞð1 − 6pþ 6p2Þ.
However, it follows from the central limit (de Moivre–

Laplace) theorem that for large N with p constant the
distribution becomes asymptotically normal [53], i.e.,

PðnÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1 − pÞhnip exp

�
−

ðn − hniÞ2
2ð1 − pÞhni

�
; ð12Þ

where hni is given by (6) in agreement with the KZM and
we have used that the variance is proportional to the mean,
according to Eq. (7).
Nonuniform probabilities for defect formation.—We

have assumed at the interface between multiple domains
that topological defects form with constant probability p.
One can generally expect this not to be the case. For
instance, according to the geodesic rule, the probability for
defect formation depends on the number of domains that
merge at the location of interest [1,51,54,55]. One may
wonder how the defect number distribution is affected
when the probability for formation of topological defect is
not fixed but varies at different locations. Keeping the
assumption that the events of formation of topological
defects are independent, the number of defects formed
is thus given by the sum of independent Bernouilli trials,
in which the probabilities for defect formation are
fp1; p2;…; pN g. The resulting distribution is the so-called
Poisson binomial distribution with characteristic function
P̃ðθÞ ¼ QN

j¼1ð1 − pj þ pjeiθÞ, mean hni ¼ PN
j¼1 pj, and

variance VarðnÞ ¼ PN
j¼1 pjð1 − pjÞ. This probability dis-

tribution actually describes the distribution of the number
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of pairs of quasiparticles in quasifree fermion models
(one-dimensional Ising and XY chains, Kitaev model,
etc.) [48,49]. Clearly, the mean hni ¼ N p̄, where
the average formation probability p̄ ¼ PN

j¼1 pj=N .
Similarly, it is known that VarðnÞ ¼ N ½p̄ð1 − p̄Þ − s2p�,
where s2p ¼ PN

j¼1ðpj − p̄Þ2=N is the variance of the
distribution fp1; p2;…; pN g [56]. Assuming the latter to
be small, for largeN , both VarðnÞ and hni are proportional
to N and inherit a universal power-law scaling with the
quench time.
Onset of adiabaticity.—Many applications in statistical

mechanics, condensed matter, and quantum science and
technology require the suppression of topological defects.
This is the case in the preparation of novel phases of matter
in the ground state or the suppression of errors in classical
and quantum annealing. Strict adiabaticity can be associ-
ated with the probability to have no defects at all, i.e., Pð0Þ.
The latter is given by

Pð0Þ ¼ ð1 − pÞVol
fξ̂D ≈ exp

�
−
Vol

fξ̂D
p

�
¼ expð−hniÞ; ð13Þ

where the last term holds for small p. In this case, the
probability for zero defects decays exponentially with the
mean number of defects, i.e., hni ¼ pVol=fξ̂D. As a result,

log½Pð0Þ� ¼ −
pVol
fξD0

�
τ0
τQ

� Dν
1þzν

; ð14Þ

a prediction we shall test below.
Relaxed notions of adiabaticity, not based inPð0Þ, can be

imposed by considering the cumulative probability in the
tails of the distribution, for which explicit expressions
can be found with the binomial model and its normal
approximation; see Supplemental Material [57]. It is also
possible to find robust bounds, e.g., by considering the
tails of the distribution associated with high kink numbers.
For example, using the Chernoff bound the upper
tail is constrained by the inequality Pðn ≥ hni þ δÞ ≤
exp½−ðδ2Þ=ð2hni þ δ=3Þ� [57].
Numerical results.—For the sake of illustration, we

consider the breaking of parity symmetry in a second-
order phase transition [58]. Specifically, we analyze a one-
dimensional chain exhibiting a structural phase transition
between a linear and a doubly degenerate zigzag phase.
This scenario is of relevance to trapped ion chains [23,59],
confined colloids, and dusty plasmas [60], to name some
relevant examples. In the course of the phase transition,
parity is broken and kinks form at the interface between
adjacent domains. To describe the dynamics, we consider a
lattice description in which each site is endowed with a
transverse degree of freedom ϕi and the total potential reads

Vðfϕig; tÞ ¼
X
i

1

2
½λðtÞϕ2

i þ ϕ4
i � þ c

X
i

ϕiϕiþ1; ð15Þ

where fϕig are real continuous variables and i ¼ 1;…; N.
As the coefficient λðtÞ is ramped from a positive initial
value to a negative one, the local single-site potential
evolves from a single well to a double well. The near-
est-neighbor coupling favors ferromagnetic order when
c < 0 and antiferromagnetic otherwise. The evolution
across the critical point λc is described by Langevin
dynamics

ϕ̈i þ η _ϕi þ ∂ϕi
Vðfϕig; tÞ þ ζ ¼ 0; i ¼ 1;…; N; ð16Þ

where η > 0 accounts for friction and ζ ¼ ζðtÞ is a real
Gaussian process with zero mean. Equations (15) and (16)
account for the Langevin dynamics of a ϕ4 theory on a
lattice. This system is well described by Ginzburg-Landau
theory and is characterized by mean-field critical exponents
ν ¼ 1=2 and z ¼ 2 in the overdamped regime [23,58].
The dynamics is induced by a ramp of λðtÞ from the value
λð0Þ ¼ λ0 to λðτQÞ ¼ λf in the quench time τQ according to
λðtÞ ¼ λ0 þ jλf − λ0jt=τQ across the critical point λc ¼ 2c
(see [57,61] for details).
Full counting statistics of kinks is built by sampling

over an ensemble of 15 000 trajectories; see Fig. 1 and
Supplemental Material [57] for lower sampling. The mean

FIG. 1. Characterization of probability distribution of topo-
logical defects. (Left) Probability distribution of the number of
kinks PðnÞ generated as a function of the quench time τQ. The
numerical histograms are compared with the normal approxima-
tion (12) and the dashed vertical line denotes the mean value hni.
(Right) Total distribution of kinks in a box-and-whisker chart, for
different quench times and a chain ofN ¼ 100 sites, using 15 000
trajectories. CR and CL denote the cumulative probability above
and below the mean.
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and width of the distribution are reduced for increasing
quench times. Histograms for PðnÞ are shown to be well
reproduced by the normal approximation (12) away from
the onset of adiabatic dynamics when the value of Pð0Þ is
significant.
The universal power-law scaling of the cumulants

as a function of the quench time is shown in Fig. 2.
A fit to the mean number of kinks yields κ1 ¼
ð30.838� 0.297Þτ−0.251�0.001

Q , in good agreement with
the KZM, which predicts the power-law exponent βKZM ¼
ν=ð1þ zνÞ ¼ 1=4 for mean-field values ν ¼ 1=2, z ¼ 2.
Signatures of universality beyond the KZM are evident
from the scaling of higher-order cumulants. Non-normal
features of the distribution are signaled by the non-
zero value of κq with q ≥ 3. The variance scales as
κ2 ¼ ð16.948� 0.217Þτ−0.252�0.001

Q , while the third cumu-
lant is fitted to κ3 ¼ ð3.621� 0.281Þτ−0.251�0.011

Q . Power-
law exponents are thus found as well in excellent agreement
with the theoretical prediction in Eq. (11).
We note, however, that there is an infinite number of

distributions in which cumulants exhibit a universal scaling
with the quench rate of the form κq ¼ aqτ

−βKZM
Q . According

to our model for the full kink counting statistics, the ratio
between any two cumulants is independent of the quench
time and fixed by the probability p for kink formation at
the merging between adjacent domains. In particular,
κ2=κ1 ¼ 1 − p and κ3=κ1 ¼ ð1 − pÞð1 − 2pÞ. Figure 3
shows the ratio between the first three cumulants as a
function of the quench rate. The numerical results are in
excellent agreement with the theoretical prediction. In

particular, it is found that the observed cumulant ratios
κ2=κ1¼0.578�0.014, κ3=κ1¼0.134�0.023, and κ3=κ2 ¼
0.232� 0.040 are consistent with a single well-defined
value of the probability for kink formation p ¼ 0.422�
0.014; see Supplemental Material [57].

FIG. 2. Universal scaling of the cumulants κq of the kink
number distribution. From top to bottom, the mean kink
density (q ¼ 1), its variance (q ¼ 2), and the third centered
moment (q ¼ 3) are shown as a function of the inverse
quench time τQ for a chain of N ¼ 100 sites and 15 000
trajectories. Symbols represent numerical data, while solid
lines describe the analytical approximation derived in the
scaling limit, with βKZM ¼ ν=ð1þ zνÞ.

FIG. 3. Ratio between the first three cumulants as a function of
the quench rate. The numerical results (symbols) for the ratio
between the cumulants κα and κβ, where α > β and α; β ∈
f1; 2; 3g, are depicted as function of the inverse quench time
τQ. The solid line corresponds to the average of the ratio κα=κβ
and the shadow region between two dashed lines corresponds to
the uncertainty associated with each cumulant ratio. Additionally,
we show the numerical (symbols) and mean value (solid lines) of
p calculated according to the plot legends.

FIG. 4. Universal scaling of the probability for no kinks Pð0Þ as
a function of quench time. The dashed lines show the universal
scaling of the probability for no kinks, as predicted by Eq. (14),
plotted as a reference with βKZM ¼ ν=ð1þ zνÞ. Numerical data
(squares) are in excellent agreement with the theoretical pre-
diction. Additionally, using Eq. (12) with n ¼ 0, we show the
normal approximation for large N (circles) with the fitted value
of p in Fig. 3.
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As further evidence for our model, we analyze the
probability for no kink formation Pð0Þ as a function of
the quench time in Fig. 4. Its numerical value estimated
from the histogram constructed with the ensemble of
trajectories follows the theoretical prediction (14). Thus,
Fig. 4 confirms that Pð0Þ decays exponentially with
the mean number of kinks, which exhibits a uni-
versal power-law scaling. At fast quenches, Pð0Þ
approaches zero, the comparison is limited by the finite
sampling, and the saturation of κ1 in Fig. 2 due to
finite-size effects. The normal approximation Pð0Þ ¼
½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πð1 − pÞhnip � exp½−hni=2ð1 − pÞ� works well for
moderate quench rates when PðnÞ is symmetric and in
absence of finite-size effects, losing accuracy at the onset
of adiabaticity, when Pð0Þ is significant. This is shown in
Fig. 4 for the estimated p ¼ 0.422� 0.014 extracted from
the mean number of kinks (e.g., in Fig. 2). As with Pð0Þ,
we note that other notions of deviations away from the
mean are also shown to be constrained by KZM scaling, as
shown in the Supplemental Material [57].
Summary.—When a continuous phase transition is trav-

ersed in a finite timescale τQ, topological defects form. The
average number scales with the quench time τQ following a
universal power-law scaling predicted by the Kibble-Zurek
mechanism. The same scaling describes the density of
excitations in the quantum domain as well. Given a system
whose critical dynamics is described by the KZM, we have
argued that the full number distribution of topological
defects is universal and described by a binomial distribu-
tion. This model assumes that, in the course of the critical
dynamics, the system size is partitioned in domains of
length scale given by the KZM correlation length. The
event of topological defect formation at the interface
between multiple domains is associated with a discrete
random variable with a fixed success probability. A testable
prediction is that all cumulants of the distribution are
proportional to the mean and thus inherit a universal power-
law scaling with the quench time, while cumulant ratios are
constant and uniquely determined by the probability for
kink formation. Other quantities such as the probability for
no defects and the deviations away from the mean also
exhibit a universal dependence on the quench time. Our
findings motivate the quest for universal signatures in the
counting statistics of topological defects across the wide
variety of experiments used to test KZM dynamics, using,
e.g., convective fluids [62,63], colloids [34], cold atoms
[35–39], and trapped ions [31–33].
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