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In ergodic many-body quantum systems, locally encoded quantum information becomes, in the course
of time evolution, inaccessible to local measurements. This concept of “scrambling” is currently of intense
research interest, entailing a deep understanding of many-body dynamics such as the processes of chaos
and thermalization. Here, we present first experimental demonstrations of quantum information scrambling
on a 10-qubit trapped-ion quantum simulator representing a tunable long-range interacting spin system, by
estimating out-of-time ordered correlators (OTOCs) through randomized measurements. We also analyze
the role of decoherence in our system by comparing our measurements to numerical simulations and by
measuring Rényi entanglement entropies.
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Synthetic quantum systems of atoms, ions, and super-
conducting qubits provide us with excellent platforms for
studying fundamental aspects of the quantum information
dynamics [1]. Existing tabletop experiments with high
fidelity quantum control have great prospects in exploiting
features of quantum dynamics related to black holes and
gravity models, high energy physics models and condensed
matter systems [2–4]. These platforms can probe essential
out-of-equilibrium phenomena of interacting many-body
systems, such as quantum chaos, thermalization and many-
body localization [5,6]. In particular, the systems with
single-site control have demonstrated the spreading of
time-ordered correlations [7–9] and they have confirmed
the existence of Lieb-Robinson bounds [10] in nonrelativ-
istic locally interacting systems [11,12].
Recently, a novel concept has been shown to have the

ability to identify a fundamental feature of many-body
quantum dynamics: quantum information scrambling.
Here, “scrambling” describes how quantum information,
initially encoded in terms of local operators, becomes, after
time evolution, increasingly nonlocal and complex [13]. As
a quantum version of the butterfly effect [14], scrambling
can be identified with the decay of a new type of many-
point correlation functions, namely, out-of-time ordered
correlations (OTOCs) [15,16]. OTOCs have been first used
to quantify the properties of “fast scrambling” governed by
universal Lyapunov exponents in the dynamics of black
holes [13,15–21], and to describe chaotic systems with
holographic duals [22,23]. For quantum lattice models,
which are more relevant to experiments with current
quantum simulators, OTOCs have the form

OðtÞ ¼ D−1Tr½WðtÞVWðtÞV�; ð1Þ

with WðtÞ ¼ eiHtWe−iHt a time-evolved Heisenberg oper-
ator, W and V local, Hermitian operators, H a many-body
Hamiltonian and D the Hilbert space dimension [24].
OTOCs have been shown to detect universal signatures
of many-body quantum chaos [25–27], many-body locali-
zation [28–30], and dynamical quantum phase transitions
[31]. In particular, in ergodic systems with local inter-
actions, the decay of the OTOCs of local operatorsW and V
initially separated by a distance d occurs at a characteristic
time tc ∼ d=vB, where vB is the butterfly velocity [19]. This
result can be understood from a hydrodynamical descrip-
tion associated with a ballistic spatial spreading of the
operatorWðtÞ, whose “wave front” travels with velocity vB
and also broadens diffusively in time [25–27,32,33]. While
in seminal experimental work, OTOCs have been measured
either for collective (nonlocal) operators [34,35] or in
small-scale 3–4 qubit systems [2,36], scrambling quantified
by the OTOCs of local operators (encoding local quantum
information) has so far eluded observation in a many-body
system.
In this Letter, we present first measurements of OTOCs

in a spin-model consisting of N ¼ 10 qubits with local
interactions of tunable range, realized in a trapped-ion
quantum simulator. To this end, we implement a recently
proposed protocol, based on measuring statistical correla-
tions of randomized measurements [37], to access OTOCs
as defined in Eq. (1). This allows us in particular to monitor
the emergence of a traveling operator wave front, and
observe the crucial role played by the interaction range
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[38–43]. Furthermore, we demonstrate the robustness of
the implemented protocol against certain types of
decoherence mechanisms. Most importantly, the imple-
mented protocol neither relies on time-reversed evolution
nor auxiliary degrees of freedom required in previous
proposals [44–49]. To verify its robustness, we compare
our measurement results with numerical simulations, and
perform additional randomized measurements of operator
spreading [50], and entanglement Rényi entropies [51,52].
Experimental setup and protocol.—The experimental

studies are performed on a trapped-ion analog quantum
simulator, realized with a linear chain of N ¼ 10 40Caþ
ions. Quantum information is encoded in two (pseudo-)
spin states jS1=2; m ¼ þ1=2i≡ j0i and jD5=2; m ¼
þ5=2i≡ j1i, respectively. Entangling operations are per-
formed using a bichromatic laser field, which off-
resonantly couples the electronic and vibrational states
of the ions [8]. The resulting interaction Hamiltonian is
expressed as

H ¼
X

i≠j

J0
ji − jjα σ

x
i σ

x
j þ B

X

i

σzi ; ð2Þ

where i,j are the indices representing the position of ions in
the chain, and σβ, β ∈ fx; zg, denote Pauli spin matrices; J0
and α represent the maximum strength and exponent of the
equivalent Ising-type interaction, respectively. Note that the
above interaction Hamiltonian leads to a spin flip-flop type
interaction when the transverse field B ≫ J0 (i.e.,
H ¼ P

i≠j Jijσ
þ
i σ

−
j þ B

P
i σ

z
i ), which is routinely used

in analog quantum simulators [8,9]. Coherent control of
the spin state of an individual qubit is achieved by a tightly
focused, steerable laser beam, enabling the preparation

of any desired product state jΨki ¼ ⊗
N

i¼1
jψ ii. More details

about the experimental platform can be found in the
Supplemental Material [53].
The experimental protocol to measure OTOCs consists

of two main parts and is illustrated in Figs. 1(a) and 1(b). In
the first part [Fig. 1(a)], we prepare an initial product state
jk0i ¼ j0; 0;…; 0i. Next, we apply a local random unitary
u ¼ u1 ⊗ … ⊗ uN where each ui, implementing a random
single spin rotation, is sampled independently from the
circular unitary ensemble [58]. As investigated in detail in
Refs. [52,59], these unitaries are generated with high
fidelity in our apparatus (see the Supplemental Material
for single-qubit gate fidelity [53]). Subsequently, the
system is evolved in the presence of the Ising
Hamiltonian H, for time t and the operator W ¼ σxj, for
j ∈ f1;…; Ng, is measured. After NM ¼ 150 (NM ¼ 300
for t ¼ 4, 5 ms) repetitions, one obtains an estimation of
hWðtÞiu;k0

¼ hk0ju†WðtÞujk0i. In the second part of the
experiment, we prepare the initial product state jk0i and
repeat the experimental procedure with the same random
unitary u. In this part, a unitary V ¼ σz1, is applied, in

addition, before the time evolution [see Fig. 1(b)]. By
repetition (NM ¼ 150 or NM ¼ 300), we obtain an esti-
mation of hVWðtÞViu;k0

. The steps are illustrated in
Fig. 1(b). Both parts are finally repeated for NU ¼ 500
sets of unitaries u to build statistical correlations. Note that
the choice of NM and NU determines the expected
statistical error which is investigated in detail in Ref. [37].
The basic intuition to understand how statistical corre-

lations between two randomized measurements hWðtÞiu;k0

and hVWðtÞViu;k0
can be used as probes for operator

spreading, and how they are related to OTOCs is provided
in Figs. 1(c)–1(e). The figure shows experimentally mea-
sured expectation values hWðtÞiu;k0

and hVWðtÞViu;k0
for

NU ¼ 500 unitaries u, V ¼ σz1 and W ¼ σx5. At initial time
t ¼ 0 ms [Fig. 1(c)], the system has not evolved under H,
and so the measurement of W at j ¼ 5 is not affected by
whether V has been applied at j ¼ 1 or not. Thus, we
observe (up to projection noise) near perfect correlations
between hWðtÞiu;k0

, and hVWðtÞViu;k0
. At later times t ¼

2 ms and t ¼ 5 ms, as shown in Figs. 1(d) and 1(e), the
information that V had been applied at j ¼ 1 has spread
over the system, and hence the measurement of W at j ¼ 5
is affected. As an effect, the correlations between
hWðtÞiu;k0

, and hVWðtÞViu;k0
decrease with time, as the

OTOCs in ergodic systems.
The formal mapping of correlations between expectation

values obtained via forward time evolution from random-
ized initial states and out-of-time-ordered correlation func-
tions has been derived in Ref. [37]. For the local random

(a) (b)
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1
(c)
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FIG. 1. (a),(b) Experimental procedure to measure two parts of
the OTOCs hWðtÞiu;k and hVWðtÞViu;k0

. Here, k (k0) refers to
the initial product state jki ¼ jk1; k2;…; kni (jk0i ¼ j0;…; 0i)
with ki ∈ f0; 1g. (c)–(e) Spread of operator WðtÞ ¼ σz5ðtÞ is
observed in terms of loss of correlations between two measured
quantities (hWðtÞiu;k0

and hVWðtÞViu;k0
) for t ¼ 0, 2, and 5 ms,

where V ¼ σz1. The experimental study is carried out for
α ¼ 1.21, J0 ¼ 2π × 30.13 Hz and B ¼ 2π × 1.5 kHz (see the
Supplemental Material for the experimental details [53]).
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unitaries employed here, the first part of the protocol
[Fig. 1(a)] is to this end repeated (with the same unitaries
u) for a set En ¼ fk0;…;k2n−1g (n ¼ 2 in the context of
this work, see below) of initial product states k ∈ En to
obtain estimations of hWðtÞiu;k ¼ hkju†WðtÞujki for all
k ∈ En. Here, ks ¼ ðks;1;…; ks;NÞ with ks;i ∈ f0; 1g is
given by the reverse N-bit binary representation of s, e.g.,
k0 ¼ ð0; 0;…; 0Þ, k1 ¼ ð1; 0;…; 0Þ, k2 ¼ ð0; 1; 0;…; 0Þ,
k3 ¼ ð1; 1; 0;…; 0Þ [37]. The summed correlations
hWðtÞiu;khVWðtÞViu;k0

for all k ∈ En map then to “modi-
fied” OTOCs [37]

OnðtÞ¼
P

k∈En
ð−2Þ−D½k0;k�hWðtÞiu;khVWðtÞViu;k0P

k∈En
ð−2Þ−D½k0;k�hWðtÞiu;khWðtÞiu;k0

; ð3Þ

for n ∈ f0;…; Ng and … the ensemble average over the
random unitaries u. Here, D½k0;k� is the Hamming
distance between k0 and k, i.e., the number of spin flips
to transfer jk0i into jki. As shown in Ref. [37] and the
Supplemental Material [53], the modified OTOCs OnðtÞ,
with n ¼ 0; 1;…; N, represent a series with fast conver-
gence to OðtÞ with increasing n, in particular
ONðtÞ ¼ OðtÞ. This means that, to obtain a quantitative
measure of the OTOC OðtÞ, the modified OTOCs O0ðtÞ,
O1ðtÞ,…, should be measured (with increasing experimen-
tal effort) until convergence to OðtÞ. These convergence
aspects are discussed in details in Ref. [37] in the context of
several physical examples. In our case, we obtain approxi-
mate convergence to OðtÞ at n ¼ 2 (see below and [53]).
Note that the lowest order modified OTOC,O0ðtÞ, has been
measured using this method in a four qubit NMR sys-
tem [60].
Measurement of OTOCs.—We now present measure-

ments of the modified OTOCs OnðtÞ for n ¼ 0, 2 for two
values of the power law exponent α ¼ 1.21 (long-range
interaction), and 0.85 (corresponding to a very long-range
interaction) and demonstrate the fast convergence to OðtÞ
by a comparison to numerical simulations. For our
Hamiltonian evolution with long-range interactions, the
operator wave front is not expected to spread in a purely
ballistic manner and the shape of the spatial-temporal
profile of time ordered [11,12] and out-of-time ordered
correlations [38–43] is the matter of current theoretical
investigations. In Figs. 2(a) and 2(b), the measured OTOCs
O0ðtÞ, O2ðtÞ (circles) are plotted as a function of time t
after the quantum quench at α ¼ 1.21, which we compare
with numerical simulations (solid lines) assuming unitary
time evolution. The error bars are obtained via the
Jackknife method [61]. The exact OTOC OðtÞ calculated
from Eq. (3) is shown in Fig. 2(c). All two measured
OTOCs display the same qualitative behavior; initially
near-perfect (anti-) correlations exist for measurements of
W ¼ σxj performed at ion j > 1 (j ¼ 1, respectively) and
hence reveal spatiotemporal profiles of the OTOCs in the
long-range interacting system. This is described as wave
front propagation of local perturbation from the causal site,
i.e., the site at which Vð0Þ operator is encoded, to the effect
site where the operator WðtÞ is measured. For the current
studies, the propagation of the wave front is indicated with
an arrow in Fig. 2. For α ¼ 0.85, Fig. 2 right panel,
corresponding to even longer range interactions than the
aforementioned case, the dynamics of OTOCs look quali-
tatively different compared to α ¼ 1.21. Particularly, here,
the dynamics are faster than in the former case. A detailed
discussion of the quantitative differences is given below.
At the quantitative level, two observations are apparent:

(i) experimentally measured and theoretically simulated
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FIG. 2. Out-of-time ordered correlators in a 10-qubit quantum
simulator for local operators V ¼ σz1 and WðtÞ ¼ σxjðtÞ for j ¼
1; 2;…; 10 (color coded in the figure). On the left panel,
estimated OTOCs namely O0ðtÞ in (a), and O2ðtÞ in (b) are
shown for various interaction times and qubits at interaction
exponent α ¼ 1.21 and J0 ¼ 2π × 30.13 Hz and B ¼
2π × 1.5 kHz. On the right panel, measurement of OTOCs at
α ¼ 0.85, J0 ¼ 2π × 40.78 Hz and B ¼ 2π × 1.5 kHz. Here
circles are experimental points and lines are numerical results
for the experimental parameters. (c) and (f) are the exact OTOCs
OðtÞ ¼ O10ðtÞ simulated for the aforementioned parameters.
Error bars associated with the experimental measurements are
of the size of the symbols and they are deduced by the Jackknife
sampling method. Here, red arrows indicate direction of propa-
gation of the operator wave front and corresponding vertical
dashed lines indicate the times when OTOCs decay to 0.5 (see
main text for a detailed discussion).
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OTOCs are, within error limits of the experiment (see the
Supplemental Material [53]), in good agreement, implying
consistency of the protocol while measuring OTOCs in our
system. Furthermore, since the theoretical curves are
obtained by simulating unitary dynamics, this demonstrates
that the measurement protocol is not affected by
decoherence, which appears due to global dephasing in
the experiment (see below and the Supplemental Material
for further discussion [53]). (ii) O0ðtÞ describes the same
qualitative behavior asO2ðtÞ but quantitatively differs from
the actual OTOC OðtÞ, thus corroborating poor approx-
imations of the OTOCs as predicted by the theory [37]. On
the contrary, the OTOC O2ðtÞ provides a good approxi-
mation toOðtÞ, and captures in particular the features of the
operator spreading [compare Figs. 2(b) and 2(c), and
Figs. 2(e) and 2(f)]. This means that the sampling pro-
cedure described above to access the converging series
OnðtÞ is adapted to our experimental setup [53].
Furthermore, the OTOC measurements slightly deviate at
the later times of t ¼ 4, 5 ms. This deviation might be due
to uncertainties in the determination of the Hamiltonian
parameters, which are estimated through measurements of
local excitation spread in the ion chain [8]. For further
details, see the Supplemental Material [53].
In Figs. 3(a) and 3(b), we study the shape of the

spatiotemporal profile of the OTOCs. To this end, we
rescale the time axis t − ðj − 1Þ=v2, with v2 chosen such
that we observe the best possible collapse of the measured
data for various locations j of W at a threshold value of
O2 ¼ 0.5 (see the Supplemental Material for details of the
fitting procedure [53]). In Fig. 3(a), for a power-law
exponent α ¼ 1.21, we find that the measured data indeed
collapses. Our early time data is thus consistent with a
ballistic expansion of the operator wave front, with velocity
v2 ¼ ð1.0� 0.2Þ × 103 s−1. We note that, due to finite time
and size effects, a slow emergence of superballistic

behavior, predicted for large systems and α ¼ 1.2 [43],
cannot be unambiguously distinguished with our exper-
imental data. In Fig. 3(b), for a power-law exponent
α ¼ 0.85, we do not observe a collapse of the measured
data to a single curve, meaning that the shape of the
operator wave front is not conserved over time and space,
and therefore that the dynamics is not ballistic. A broad-
ening of the decay of O2 with time and distance is instead
clearly visible. While we emphasize that the spatiotemporal
profiles still show some differences when comparing O2ðtÞ
and the exact OTOCOðtÞ, cf. Fig. 2, this strong broadening
is consistent with the theoretical prediction for α < 1 [43].
Other probes of the scrambling of quantum informa-

tion.—In generic quantum systems, the scrambling of
quantum information does not only manifest itself through
the decay of the OTOCs but also through a decrease of
statistical moments of the type hWðtÞi2u;k0

[50], and an
increase of entanglement entropies [1]. As we show now,
the measurement of these two quantities, which are both
accessible via randomized measurements, provides us both
with evidence of operator spreading that are complemen-
tary to OTOCs, and allows us to identify and assess the role
of decoherence in our experiment.
The second moment of the expectation value hWðtÞi2u;k0

is accessed from statistical autocorrelations of randomized
measurements performed on a single system. Its measure-
ment is enabled through the first part of the OTOC protocol
[Fig. 1(a)]. Note that hWðtÞi2u;k0

appears also as normali-
zation in the denominator of Eq. (3). As shown in Fig. 4(a),
hWðtÞi2u;k0

decreases with time, providing, for unitary
dynamics, a direct signature of operator spreading and
scrambling [50]. We emphasize that decoherence has a
small decreasing effect on the measurement results. This is
due to the fact that decoherence drives the system towards a
steady state with reduced magnetization. Hence, both,
decoherence and scrambling lead to a decay of
hWðtÞi2u;k0

with time. In contrast, the OTOC measurement
is not affected by decoherence, because our estimation from
Eq. (3) is normalized (see Figs. 2–3, for the comparison to
unitary theory, and Supplemental Material for simulations
with decoherence [53]).
Rényi entanglement entropies quantifying bipartite

entanglement are directly related to universal properties
of operator spreading [1,26,27], and allow us to observe
direct effects of decoherence. The growth of Rényi entan-
glement entropy was previously measured in Ref. [52]
where the effects of decoherence were suppressed by
starting the quantum quench from an initial Néel state in
a decoherence-free subspace. In contrast, the effects of
decoherence can be made visible for an initial condition as
in the OTOC measurements, by choosing a random initial

state ⊗
N

j¼1
uijk0i (with fixed local random unitaries ui). This

state is not protected against decoherence in time evolution.
We evolve this state under H, and we measure the second

(b)
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FIG. 3. Out-of-time-ordered correlators versus rescaled time for
interactions with power-law exponents (a) α ¼ 1.21 and
(b) α ¼ 0.85 and for WðtÞ ¼ σxjðtÞ located at spins j ¼ 2, 3,
4, 5 (red, blue, pink, black). For (a) v2 ¼ ð1.0� 0.2Þ × 103 s−1

and (b) v2 ¼ ð0.8� 0.2Þ × 103 s−1 are fitted such that we
observe the best possible collapse of the data at a threshold
value 0.5 (see the Supplemental Material for details [53]).
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Rényi entropy of the final state, and of reduced density
matrices of arbitrary partitions A following Refs. [52,62].
Figure 4(b) shows an increase of the entropy of the total
system to around Sð2ÞðρAÞ ¼ −log2Tr½ρ2A� ¼ 0.8 at t ¼
2 ms and t ¼ 5 ms, signaling the presence of decoherence,
and in quantitative agreement with our numerical simu-
lations [53]. However, the entropy of the subsystems
acquires even higher values, which demonstrates the
presence of bipartite entanglement [52] associated with
operator spreading.
Conclusion and outlook.—We have presented measure-

ments of out-of-time ordered correlators in a system of
trapped ions with power-law interactions of tunable range.
We have demonstrated how the “wave front” of a local
operator propagates in such systems, leading to spatial
delocalization of quantum information, and scrambling.
The key ingredients of the utilized measurement protocol
are randomized measurements which can be implemented
with current state-of-the-art technology in various synthetic
quantum systems. Their usability is not only feasible with
trapped ions but also with Rydberg atoms, optical cavity
systems, and superconducting qubits, hence advocating for
a powerful and generic method to probe quantum dynam-
ics. The ability to access (modified-)OTOCs in various
setups, and their convergence to the exact ones, motivates
new approaches to engineer various types of quantum
dynamics, in particular in the situation of “fast scrambling”
relevant to quantum gravity [63–65] and “out-of-equilib-
rium” dynamics in lattice systems [6].
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FIG. 4. (a) Time evolution of hWðtÞi2u;k0
¼ hσxjðtÞi2u;k0

, aver-
aged over j (all qubits 1 to 10). Squares (red) and triangles (black)
are numerical simulations of unitary dynamics and including
decoherence effects, respectively. Dashed lines are guides to the
eye. (b) Additionally, Rényi entropy measurements (in circles)
are carried out at t ¼ 0 (blue), 2 ms (black) and 5 ms (red) for
partitions of the form A ¼ f1;…; Nsubg. Squares and triangles
are theoretical simulations without and with decoherence,
respectively. The experimental and simulation parameters for
studies presented in (a) and (b) are α ¼ 1.21,
J0 ¼ 2π × 30.13 Hz, and B ¼ 2π × 1.5 kHz.
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