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Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground-
state properties of complex quantum systems and gives relations between correlation functions. In this
Letter, we show that the Sachdev–Ye–Kitaev model, in its simplest form of Majorana fermions with
random four-body interactions, is supersymmetric. In contrast to existing explicitly supersymmetric
extensions of the model, the supersymmetry we find requires no relations between couplings. The type of
supersymmetry and the structure of the supercharges are entirely set by the number of interacting Majorana
modes and are thus fundamentally linked to the model’s Altland–Zirnbauer classification. The super-
symmetry we uncover has a natural interpretation in terms of a one-dimensional topological phase
supporting Sachdev–Ye–Kitaev boundary physics and has consequences away from the ground state,
including in q-body dynamical correlation functions.

DOI: 10.1103/PhysRevLett.124.236804

The Sachdev–Ye–Kitaev (SYK) model [1,2] is a toy
model that provides insight into diverse physical phenom-
ena ranging from the holographic principle [3–5] to
quantum chaos [6–11] and non-Fermi liquid behavior of
strongly correlated electron systems [12–18]. Similar to
black holes, the model is believed to scramble quantum
information with maximal efficiency [17,19].
The simplest variant of the SYK model describes k

Majorana fermions that interact through a random four-
body term [2]. The model’s proposed physical realizations
include mesoscopic systems based on Majorana fermions
in vortices or quantum dots [20,21] or the ends of a one-
dimensional topological phase [22].
Various generalizations of the SYK model have been

considered, including models with n-body interactions
[23,24] and supersymmetric extensions [25–29]. Typically,
exact supersymmetry (SUSY) requires fine-tuning of the
parameters [30–33]. In the supersymmetric SYK extensions,
this fine-tuning corresponds to requiring certain relations
between different couplings [25].
In this Letter, we show that already the simplest four-

body SYK model, without any fine-tuning, is supersym-
metric for all but two values of k mod 8. The type
of SUSY depends only on k. The supercharges will be
shown to relate to ramps and long-time plateaus in
time-dependent correlation functions [34], which thus
provide signatures of SUSY far from equilibrium. In
particular, we find that the number of supercharges is
linked to the presence and nature of time-reversal symmetry
and is reflected in the ramp shape [35]. We also show
that the number and structure of supercharges set the
plateau features in q-body time-dependent correlation
functions.

Throughout this Letter, we focus on SUSY in the sense
of supersymmetric quantum mechanics [30,31,36–42].
SUSY is characterized by N , the number of mutually
anticommuting Hermitian fermionic supercharges that
square to the Hamiltonian [36]

fQa;Qbg ¼ 2Hδab; ½H;Qa� ¼ 0: ð1Þ

We consider the following Hamiltonian, which describes
four-body interactions between k Majorana modes [2],

H ¼
Xk−1
t¼0

Xt−1
s¼0

Xs−1
r¼0

Xr−1
q¼0

Jqrstγqγrγsγt þ E0; ð2Þ

with real (as required by Hermiticity) but otherwise
structureless couplings Jqrst and the constant E0 that
ensures positive energies. The Hermitian Majorana
operators γq ¼ γ†q satisfy the anticommutation relation
fγq; γrg ¼ 2δqr [43] and span an M-dimensional Hilbert
space with M ¼ 2⌈k=2⌉ [44]. Since each term in the
Hamiltonian [Eq. (2)] contains an even number of
Majoranas, it conserves fermion parity P, given by

P ¼
�
ik=2γ1γ2;…; γk even k;

iðkþ1Þ=2γ1γ2;…; γkγ∞ odd k:
ð3Þ

To work in a Hilbert space with well-defined fermion
parity, the additional Majorana γ∞ “at infinity” must be
included when k is odd [45]. The operator γ∞ is not local to
the SYK model; considering, e.g., a realization in a
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superconducting vortex [20], it represents a degree of
freedom with support far away from the vortex where
the SYK Majoranas γj≠∞ reside. Like the local Majoranas,
γ∞ is Hermitian and satisfies fγq; γrg ¼ 2δqr. Since
½H;P� ¼ 0, all eigenstates of H can by labeled by their
parity eigenvalue p ¼ �1, giving Hjψp

μ i ¼ εpμ jψp
μ i and

Pjψp
μ i ¼ pjψp

μ i.
The number of interacting Majorana modes, specifically

k mod 8, sets the model’s antiunitary symmetries [22,
45–47]. These come in two variants T�, antiunitary
operators satisfying T�γq≠∞T−1

� ¼ γq≠∞. They further
satisfy T�PT−1

� ¼ �P. We refer to Tþ as time-reversal
symmetry because it commutes with fermion parity and
hence sets correlations within a parity sector. Conversely,
we call T− particle-hole symmetry. Crucially for this work,
since T− flips fermion parity, its presence implies corre-
lations between parity sectors.
The consideration of both Tþ and T− implies [46] a

classification with more structure than the threefold
Wigner–Dyson way highlighted in Ref. [22]. In fact, as
we now briefly review, it gives rise to the eight real
Altland–Zirnbauer classes. For even k, either time-reversal
symmetry Tþ or particle-hole symmetry T− is present.
For odd k, both Tþ and T− are present—in this case,
Tþγ∞T−1þ ¼ ð−1Þðkþ1Þ=2γ∞. Their product, the unitary
operator Z ¼ TþT−, equals the product of all local
Majorana operators up to a complex phase and corresponds
to a chiral symmetry [45,46]. A key feature of Z, which we
will use repeatedly for diagnosing locality, is ½Z; γq≠∞� ¼ 0

and fZ; γ∞g ¼ 0. The squares T2
� vary with k and label

the eight real Altland–Zirnbauer classes [48]. While the
Altland–Zirnbauer and Wigner–Dyson picture give the
same level spacing statistics, the former also takes cross-
parity correlations into account. We summarize the sym-
metry classification in Table I and review it in detail in the
Supplemental Material [49].
SUSY is known to imply a degeneracy between the

parity sectors [36]: the supercharges Qa exchange bosonic
states with parity eigenvalues p ¼ þ1 and fermionic states
with parity eigenvalue p ¼ −1 [36]. Thus, the supercharges
anticommute with fermion parity, fP;Qag ¼ 0. The pres-
ence of particle-hole symmetry also guarantees degeneracy
between parity sectors, which as we now note, also implies
SUSY. Parity degeneracy directly follows from particle-
hole symmetry because jψp

μ i and T−jψp
μ i have the same

energy εμ ¼ εpμ ¼ ε−pμ (since ½T−; H� ¼ 0), but opposite
parity (fT−; Pg ¼ 0) [45,46]. Therefore, jψp

μ ihψ−p
μ j is

an odd-parity zero mode, i.e., an operator that commutes
with the Hamiltonian but anticommutes with fermion
parity [46]. This in turn implies SUSY: the operator
Q̃μ ¼ ffiffiffiffiffi

εμ
p jψþ

μ ihψ−
μ j satisfies Q̃μQ̃

†
μ ¼ εμjψþ

μ ihψþ
μ j and

Q̃†
μQ̃μ ¼ εμjψ−

μ ihψ−
μ j, and hence the linear combinations

Q1;μ ¼ Q̃μ þ Q̃†
μ and Q2;μ ¼ iðQ̃μ − Q̃†

μÞ are Hermitian,
anticommute, and square to εμ times the projector on the

two parity-degenerate states. Consequently, the two super-
charges

Q1 ¼
X
μ

ðQ̃μ þ Q̃†
μÞ; Q2 ¼ −i

X
μ

ðQ̃μ − Q̃†
μÞ ð4Þ

satisfy Eq. (1) and anticommute with P. Particle-hole
symmetry is present unless k ¼ 4n. Thus, all but two of
the symmetry classes are supersymmetric.
Given the presence of six supersymmetric classes, there

are a number of questions regarding the interplay of SUSY
and the symmetry classification. How does N depend on
the symmetry class? How do Qj transform under T� and
how does this translate to the structure of the supercharges?
We next turn to these questions.
We start with counting N . A direct approach is based

on counting level degeneracies. This follows from the
observation that the “spectrally flattened” Hermitian super-
charges Γj ¼ Qj=

ffiffiffiffi
H

p
satisfy

fΓj;Γkg ¼ 2δjk; ½H;Γk� ¼ 0; fP;Γkg ¼ 0: ð5Þ

They are thus many-body zero mode forms of Majorana
fermions. An even N of such zero modes give rise to a
2N =2-dimensional fermionic degeneracy space for each of
the εμ with one of the jψp

μ i chosen as “vacuum.” (With a
suitable choice, the Γj-fermion parity of an eigenstate
matches the state’s physical fermion parity.) This procedure
is similar in spirit to the standard construction of super-
multiplets [51]. For the six supersymmetric SYK classes,
a twofold degeneracy is guaranteed by T− and a further
twofold (Kramers) degeneracy is present whenever
T2þ ¼ −1, resulting in an overall fourfold degeneracy.
This suggests N ¼ 2, except for classes DIII and CII
where this count givesN ¼ 4. What this counting does not
address is how many Γj (and hence Qj) are local to the
SYK model. Next, we investigate this to obtain the
decomposition N ¼ N loc þN∞ with N loc counting the
number of supercharges involving only γq≠∞. We first
discuss the symmetry classes D and C before demonstrat-
ing the implications of locality in classes BDI and CI. For
brevity, we derive the supercharges in classes DIII and CII
with T2

− ¼ −1 in [49] and only summarize the results here.

TABLE I. Time-reversal symmetry Tþ and particle-hole sym-
metry T− in the SYK model. The symmetries may be absent
(denoted by 0), or present and square to −1 or þ1. The second
row gives the corresponding Cartan labels.

k mod 8 0 1 2 3 4 5 6 7
Label AI BDI D DIII AII CII C CI

T2þ þ1 þ1 0 −1 −1 −1 0 þ1

T2
− 0 þ1 þ1 þ1 0 −1 −1 −1
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We begin with classes D and C. Here k is even; hence,
all γq are local. Therefore, our argument above applies
directly: we find N ¼ N loc ¼ 2. All the other supersym-
metric classes have odd k; thus, potentially N ≠ N loc
due to γ∞. As we shall see, in all of these classes,
N ¼ N loc þ 1 with N following its degeneracy-based
value above. This is intuitive because γ∞ ≡ Γ∞ automati-
cally satisfies Eq. (5) (in particular, it anticommutes with
any local parity-odd operator); thus, N loc is at most
N − 1. To formally establish N loc and the transformation
of Γj under T�, we work in the energy eigenbasis,
H ¼ diagðfεμgÞ ⊗ 12N =2 , with P ¼ 1M=2 ⊗ τ3. (Here and
below, τj and σj are Pauli matrices; τj act in parity grading
and σj in the space of Kramers doublets, where applicable.
We will often omit trivial tensor factors.) In this basis,
class D (C) has particle-hole symmetry [up to a phase
diagðfexpðiφμÞgÞ omitted here and below] T− ¼ τ1ð2ÞK
(with K for complex conjugation); this follows from
T2
− ¼ �1 and parity being the only degeneracy,

12N =2 ¼ τ0. We have Γ1;2 ¼ τ1;2, which correspond to the
two supercharges introduced in Eq. (4) [52].
To study classes BDI and CI, we focus on a degeneracy

space with energy εμ and first establish the form of T� and
thus Z in this space. T2þ ¼ þ1 implies that parity is again
the only degeneracy, so T− ¼ τ1ð2ÞK in class BDI (CI).
Tþjψp

μ i ∝ jψp
μ i implies that the most general form is

Tþ ¼ expðiφμτ3ÞK. With a suitable choice of the relative
phases between the two parity sectors, we can thus use
Z ¼ TþT− ¼ τ1; in this basis, Tþ ¼ K (Tþ ¼ τ3K) for
class BDI (CI). The two Γj satisfying Eq. (5) can again be
chosen as Γ1;2 ¼ τ1;2. However, checking the (anti)com-
mutation with Z, we find that only Γ1 is local. Conversely,
we can identify Γ2 ≡ Γ∞ ≡ γ∞; this is consistent both with
γ∞ itself satisfying Eq. (5) and its transformation under Tþ.
We thus find N loc ¼ 1.
In classes DIII and CII, we find N loc ¼ 3 local super-

charges, as we show in detail in [49]. The spectrally
flattened supercharges can be written as Kronecker prod-
ucts Γj ¼ τ1σj. Their product Γ4 ¼ −iΓ1Γ2Γ3 ¼ τ1 is also
local but does not anticommute with Γj≤N loc

; it does,
however, contribute to correlation function, as we discuss
below. As in classes BDI and CI, the nonlocal supercharge
is Γ∞ ¼ τ2.
The values N loc, together with the sign s in

T�Γj≤N loc
T−1
� ¼ sΓj≤N loc

, have a natural interpretation if
one views the SYK model as arising at the end of a one-
dimensional topological phase in class BDI [22,45].
These systems admit a Z8 classification: at one of their
ends, they have ks Majoranas satisfying T�γqT−1

� ¼ sγq;
the topological index is ν ¼ ðkþ − k−Þ mod 8. Thus,
the eight topological classes can be labeled by
ν ¼ 0; 1; 2; 3; 4;−3;−2;−1 with the integers counting
the number and sign of unpaired Majoranas. In the
SUSY classes, we find the same pattern for sN loc against

kmod 8 (T�γq≠∞T−1
� ¼ γq≠∞ implies kþ ¼ k, k− ¼ 0) [see

Table II]. TheN loc supercharges Γj≤N loc
can thus be viewed

as the many-body emergence of the minimal number and
type of unpaired Majoranas consistent with k.
Next, we turn to the structure of the supercharges in

terms of the Majorana fermions γq. For this, we employ
another operator basis of the Hilbert space, the products of
na Majorana operators γq≠∞ [53]

ϒa ¼ inaðna−1Þ=2γi1ðaÞγi2ðaÞ;…; γina ðaÞ ð6Þ

with ijðaÞ ≠ ij0 ðaÞ. ϒa are Hermitian, unitary, and ortho-
normal with respect to the trace, tr½ϒaϒb�=M ¼ δab. In
total, there are 2k local operators ϒa [53]. As we aim to
expand Γj≠∞, i.e., Hermitian odd-parity operators in terms
of ϒa, we use only those ϒa with odd na and use only real
expansion coefficients.
Both time-reversal and particle-hole symmetry have the

same (anti-) commutation properties when acting on ϒa.
Since T�γqT−1

� ¼ γq, only the phase ofϒa [cf. Eq. (6)] may
change when applying T�, giving

T�ϒaT−1
� ¼ ð−1Þnaðna−1Þ=2ϒa: ð7Þ

That is, T� and ϒa commute when na¼4nþ1 and anti-
commute when na ¼ 4nþ 3. This, together with vj;a ∈ R
below, implies that, when expanding the supercharges,

Γj ¼
X
a

vj;aϒa;
X
a

v2j;a ¼ 1; ð8Þ

only terms with na ¼ 4nþ 1 contribute to Γj when
½T�;Γj� ¼ 0 and only terms with na ¼ 4nþ 3 contribute
when fT�;Γjg ¼ 0. In classes DIII and CII, we also
consider Γ4 ¼ −iΓ1Γ2Γ3, whose transformation properties
follow from those of Γ1;2;3. The resulting expansion
structure is summarized in Table II.

TABLE II. The Dyson index β, number N loc, signature
T�Γj≤N loc

T−1
� ¼ sΓj≤N loc

, and the Majorana fermion structure
of Γj≠∞. (The supercharges Qj have the same properties, since
T�HT−1

� ¼ H.) In the Majorana expansion of Γj, only those ϒa

with na ¼ 4nþ 1 or na ¼ 4nþ 3 contribute; the two options are
shown in the last two rows of the table. The horizontal line
visually distinguishes Γ4 from the three supercharges because it
does not anticommute with them. A blank entry indicates that Γ4

does not exist in these classes.

k mod 8 1 2 3 5 6 7

Label BDI D DIII CII C CI
β 1 2 4 4 2 1
sN loc 1 2 3 −3 −2 −1
Γj≤N loc

4nþ 1 4nþ 1 4nþ 1 4nþ 3 4nþ 3 4nþ 3

Γ4 4nþ 3 4nþ 1
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Having discussed the interplay of SUSY and the sym-
metry classification, we now identify signatures of SUSY,
N loc, and the supercharge structure in various observables.
A simple link between N loc and observables exists due to
the fact that the number of different Γj≤N loc

and their
linearly independent odd-parity products, i.e., including Γ4

in classes CII and DIII, equals the degrees of freedom β
(i.e., the Dyson index linked to Tþ [54]) of the
Hamiltonian’s off-diagonal matrix elements. In fact, the
most general Hermitian linear combinations of these Γj

have the same type of off diagonals, up to an imaginary
unit, as the Hamiltonian: real for β ¼ 1 (classes BDI and
CI), complex for β ¼ 2 (classes D and C), and real
quaternion for β ¼ 4 (classes DIII and CII).
In the SUSY classes, the value of β sets the energy level

correlations, including the long-range spectral rigidity,
across opposite parity sectors (these are uncorrelated with-
out SUSY), which lead to “ramps” in time-dependent
correlation functions of parity-odd observables. (For sin-
gle-Majorana examples, see Refs. [34,46].) These ramps
occur at time scales below 2π times the inverse mean level
spacing 1=Δ∞ and have β-dependent shape [35]. In
particular, the ramp connects to a long-time plateau
smoothly when β ¼ 1, sharply when β ¼ 2, and with a
kink when β ¼ 4. In Fig. 1, we show ensemble-averaged q-
body correlation functions [Eq. (10) below] in classes D, C,
DIII, and CI. For completeness, we show the correlation

function in the remaining symmetry classes, including
those that do not support SUSY, in [49].
Besides this direct correspondence between the super-

charges and ramp structure, we additionally find more
subtle consequences of SUSY: the long-time (t ≫ 1=Δ∞)
plateau in q-body correlation functions is also related to the
number and structure of the supercharges, cf. Fig. 2. To
quantify this relationship, we consider the retarded time-
dependent q-body correlation function

Cþ
q ðtÞ ¼ −iΘðtÞ 1�

k
q

� X
a;na¼q

hfϒaðtÞ;ϒað0Þgi; ð9Þ

where h…i denotes thermal average. Although the signa-
tures we reveal are present at any temperature, we find an
especially transparent relationship at infinite temperature,
where the correlation function reads

Cþ
q ðtÞ ¼ −iΘðtÞ 1�

k
q

� X
a;na¼q

1

M

X
pμν

jhψp
μ jϒajψ−p

ν ij2

× 2 cos ½tðεpμ − ε−pν Þ�: ð10Þ

When t ≫ 1=Δ∞, terms with εpμ ≠ ε−pν give a quickly
oscillating contribution δCþ

q ðtÞ that averages to zero.

FIG. 1. q-body time-dependent correlation function at infinite
temperature, averaged over an ensemble of up to 216 Gaussian
distributed Jqrst, for classes (a) D, (b) C, (c) DIII, and (d) CI. The
different colors denote different k and q, cf. inset in (a), the
dashed lines represent q ¼ 3 and the solid lines q ¼ 5. The ramp
shape follows the Dyson index β and hence links to the number of
supercharges. The long-time plateau C̄q;∞ is studied in Fig. 2.
Error bars are either smaller than the linewidth (for small k) or
smaller than the disorder-induced fluctuations of the lines (for
large k).

FIG. 2. Normalized plateau C̄q;∞M=4 of the q-body correlation
function, averaged over an ensemble of up to 214 Gaussian
distributed Jqrst. The color encodes the number k of Majoranas,
cf. panels (d) and (e). In all classes, C̄∞M=4 alternates with q
approximately as predicted in Eq. (13); the agreement is excellent
when ðkqÞ=ð k

bk=2cÞ is close to one. In panel (d), we show that

C̄∞M=ð4cÞ [with c the random matrix expectation based on
Eq. (13)] increases as a function of k but with a rate that decreases
upon increasing q [panel (e)]. Statistical error bars are smaller
than the marker size.
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Only states with εpμ ¼ ε−pν give a time-independent con-
tribution Cq;∞. Thus, Cþ

q ðtÞ¼−iΘðtÞ½Cq;∞þδCþ
q ðtÞ� with

Cq;∞¼ 1�
k
q

� X
a;na¼q

2

M

X
μ

trϒ2
aμ; ϒaμ ¼PμϒaPμ; ð11Þ

where in converting the equal-energy sum to a trace, we
introduced the projection Pμ to the eigenspace with energy
εμ and used that ϒa is Hermitian and parity odd.
Next, we convert Eq. (11) into a sum over Γj<∞. We start

by expanding ϒaμ ¼
P

j<∞ yjPμΓj (with real yj), which
holds as within an eigenspace. The (projected) operators
PμΓj<∞ form a basis for local, Hermitian, parity-odd
operators. If ϒa transforms the same (opposite) way to
Γj under T�, then generically yj ≠ 0 (yj ¼ 0). Now using
the trace orthogonality of the Γj<∞ and trΓ2

j ¼ 2N =2 ¼ N
(for N ¼ 2, 4), we find

Cq;∞ ¼ 1�
k
q

� X
a;na¼q

2

MN

X
μ

X
j<∞

½trðPμϒaPμΓjÞ�2: ð12Þ

A simple estimate for Cq;∞ can be given assuming that
expanding PμΓj<∞ ¼ P

a vμj;aϒa results in random coef-
ficients vμj;a subject only to normalization and symmetry
constraints. Denoting such a random vector average by
ð…Þ, we find

C̄q;∞M

4
¼

(
N
β N loc q∶ϒa ≜ Γj≤N loc

;

N
β δβ;4 otherwise;

ð13Þ

where ϒa ≜ Γj here means that ϒa transforms the same
way as Γj under T�. Thus, each Γj<∞ gives the same
contribution to C̄q;∞ when they contain q-Majorana
terms and zero otherwise. The nonzero value for β ¼ 4

when ϒa ≜ Γj≤N loc
arises due to Γ4 since Γ4 ≜ Γj≤N loc

.
Considering the Majorana structure of Γj in Table II,
Eq. (13) translates to an alternating pattern of C̄q;∞ as q
is varied in a given symmetry class, with complementary
C̄q;∞ values for classes with opposite sN loc.
In Fig. 2, we show the numerically obtained value of

C̄∞M=4 for various k and q. The alternating pattern
expected from Eq. (13) is clearly visible [panels (a) to
(c)]. While the numerical value of the nonzero plateau
differs from expectation when q ≪ k (and k − q ≪ k, not
shown), Eq. (13) gives an accurate prediction when
ðkqÞ=ð k

bk=2cÞ is close to one (with b…c the floor function).

To investigate this further, in panels (d) and (e), we show
C∞M=4 versus k. The growth with k is slower for q ¼ 5
than for q ¼ 3, which is in turn slower than the almost
linearly growing q ¼ 1 case [46].

To summarize, we have shown that supersymmetry is
(almost) always present in the SYK model with generic
four-body interactions. It is only absent in those classes
without particle-hole symmetry, i.e., in classes AI and AII.
The type of SUSY, in particular the number N loc of local
supercharges and their symmetry properties, follow a
pattern that finds a natural interpretation when Γj≤N loc

are viewed as emergent Majorana fermions in a one-
dimensional topological phase with SYK model boundary
physics. These SUSY features all link directly to features in
time-dependent correlation functions of fermion parity-odd
observables. For q-body retarded correlation functions, this
includes the shape of the ramp in the short-time regime, due
to a link betweenN loc and the Dyson index β, and the value
of the long-time plateau due to the imprint of how Γj

transforms under T� on its microscopic Majorana structure.
These q-body correlation functions, even with large q, can
be measured in digital quantum simulation of the SYK
model [55]. The single-particle Green’s function (q ¼ 1) is
accessible through scanning tunneling spectroscopy
[20,21]. We stress that the features in the correlation
functions are dynamical consequences of SUSY, which
are less frequently considered than ground-state conse-
quences [56,57].
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