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We show that dirty quantum Hall systems exhibit large hydrodynamic fluctuations at their edge that lead
to anomalously damped charge excitations in the Kardar-Parisi-Zhang universality class ω ≃ ck − iDk3=2.
The dissipative optical conductivity of the edge is singular at low frequencies σðωÞ ∼ 1=ω1=3. These results
are direct consequences of the charge continuity relation, the chiral anomaly, and thermalization on the
edge—in particular translation invariance is not assumed. Diffusion of heat similarly breaks down, with a
universality class that depends on whether the bulk thermal Hall conductivity vanishes. We further establish
the theory of fluctuating hydrodynamics for surface chiral metals, where charge fluctuations give
logarithmic corrections to transport.
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Introduction and results.—Quantum Hall (QH) droplets
feature gapless excitations at their edge [1]. At temperatures
far below the bulk gap, the bulk essentially remains
nondissipative but the edge is expected to thermalize;
thermalization implies that modes not protected by con-
servation laws should relax. In particular, the plethora of
chiral Luttinger liquid channels predicted for certain QH
states are damped by disorder and interactions, and only the
collective excitations corresponding to charge [2,3] and
heat [4] survive at late times. Early experiments in GaAs
[5,6] indeed observed a single linearly dispersing collective
excitation—the edge magnetoplasmon, associated with
charge fluctuations—and later experiments found evidence
for the neutral heat mode [7,8]. More recently, these QH
edge modes were observed in graphene [9,10] and cold
atoms [11,12].
Charge propagates ballistically on the edge, in the

direction fixed by the sign of the filling ν ¼ n=B. The
damping of this mode was first studied at zero temperature
in Ref. [13]. In the hydrodynamic regime, i.e., at finite
temperature T and low frequencies ωτth ≪ 1, the chiral
ballistic front is expected to broaden diffusively [3]. The
thermalization time τth may be controlled by various
mechanisms depending on the microscopics of the edge
[14]—the central assumption in this Letter is that it is
sufficiently small so that frequencies ω≲ 1=τth can be
probed experimentally.
Using fluctuating hydrodynamics, we will find that non-

linearities are relevant; large charge fluctuations lead to a
breakdown of diffusion and drive the edge to a dissipative
fixed point in the Burgers-Kardar-Parisi-Zhang (KPZ) uni-
versality class [17,18], with dynamic critical exponent
z ¼ 3=2 controlling the broadening of the chiral ballistic
front ω ≃ ck − iDk3=2. Breakdown of diffusion leads to a
failure of the Einstein relation, and the optical conductivity is

singular at low frequency σðωÞ ∼ 1=ω1=3. Singular low
frequency transport is a hallmark of large hydrodynamic
fluctuations [17,19]: when hydrodynamic interactions are
instead irrelevant, response functions at the lowest frequen-
cies are analytic and the interesting physics is instead hidden,
e.g., in the temperature dependence of transport parameters.
We stress that momentum conservation is not assumed—
disorder therefore does not have to be introduced by hand,
and does not regulate the singularity in σðωÞ which is only
cut off by finite system size.
Without momentum conservation, hydrodynamic fluc-

tuations are usually irrelevant and give small “long-time
tail” corrections to diffusive transport [20,21] σðωÞ ¼
χDþ jωjd=2, where D is the diffusion constant and d the
spatial dimension. The difference here stems from the fact
that the Uð1Þ symmetry has a chiral anomaly. The interplay
of anomalies and hydrodynamics has been appreciated
since the work of Son and Surowka [22]. Although
anomalies often only lead to subtle effects on transport,
we show that the ð1þ 1ÞD chiral anomaly has dramatic
consequences, with ballistic propagation and large hydro-
dynamic fluctuations.
The connection between momentum-conserving hydro-

dynamics and the KPZ universality class has been long
known [17,19,23]. More recently it was shown that the
hydrodynamics of a nonintegrable spin chain, despite the
lack momentum conservation, shows KPZ scaling at
intermediate energies [24]. We show here that systems
with a chiral anomaly display KPZ scaling all the way
down to arbitrarily low energies even without momentum
conservation.
In the remainder of this Letter, we establish the results

discussed above for charge fluctuations. Energy fluctua-
tions are then studied, and diffusion of heat on the edge is
similarly shown to break down. Finally, we analyze
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fluctuations in higher dimensions. The upper critical
dimension for these systems is dc ¼ 2, where fluctuations
are marginally irrelevant, and the theory describes the
hydrodynamics of surface chiral metals.
Charge fluctuations on the edge.—We study systems in

one spatial dimension with a single Uð1Þ symmetry, that is
anomalous,

∂μjμ ¼
ν

4π
ϵμρFμρ: ð1Þ

We are working in units where e2=ℏ ¼ 1. Such systems can
be thought of as living on the boundary of a gapped bulk.
When ν ∈ Z, the topological order in the bulk is trivial and
the anomaly can be canceled by a properly quantized
Chern-Simons term ðν=4πÞAdA for the background field.
When ν ∉ Z as in fractional QH states, the bulk has
nontrivial topological order. We make no additional sym-
metry assumptions—in particular, momentum is not
approximately conserved in any limit.
We are interested in the finite temperature properties of

the system on the edge, at temperatures small compared to
the bulk gap kBT ≪ Δ. We will assume that the edge
thermalizes—this implies that physics at the lowest
frequencies is governed by hydrodynamics; namely, the
dynamics of conserved densities: charge n ¼ j0, and heat
(or energy). We postpone the treatment of heat to the next
section; as we will see the dynamics of charge density alone
is already surprisingly rich.
Dissipation in a theory with a nonanomalous Uð1Þ

symmetry is described by simple diffusion ω ∼ −iDk2.
The goal of this section is to determine how the anomaly
ν ≠ 0 changes this picture. The hydrodynamic treatment
proceeds as follows [25,26]: at late times, all operators are
controlled by their overlaps with hydrodynamic densities,
here n. This holds in particular for the current, which can be
written in terms of n—or its associated potential μ—in a
gradient expansion

jx ¼
ν

2π
μ − χD∂xμþ � � � ; ð2Þ

where the charge susceptibility χ ¼ ∂n=∂μ and diffusivity
D are unknown functions of n (or μ), and � � � denotes higher
gradient terms Oð∂2

xμÞ. The anomaly fixes the leading term
in the constitutive relation [27]. Combining Eqs. (1)
and (2), one finds the following equation of motion for
the charge density:

0 ¼ _nþ c∂xn − ∂xðD∂xnÞ þ � � � ; ð3Þ

with velocity c ¼ ν=ð2πχÞ. Linearizing in the fluctuations
n ¼ n̄þ δn, the standard hydrodynamic approach [25]
yields the retarded Green’s function

GR
nnðω; kÞ ¼ χ

ickþDk2

−iðω − ckÞ þDk2
þ � � � ; ð4Þ

where the corrections… are less singular as ω; k → 0. Here
and in the following, functions of n such as c, D, χ are
evaluated on the background density n̄. In the absence of an
anomaly, the velocity c vanishes and one obtains a diffusive
Green’s function as expected. The linear analysis suggests
that the anomaly ν ≠ 0 leads to a right-moving ballistic
front at velocity c ¼ ν=ð2πχÞ, with diffusive spreading
around the front [2,3]. We will see that this conclusion is
incorrect. The chiral ballistic front is tied to the bulk Hall
conductivity

σbulkxy ¼ lim
ω→0

GR
jxn

ðω; 0Þ ¼ χc ¼ ν

2π
; ð5Þ

and is a robust consequence of the anomaly. However,
dissipation does not lead to diffusive spreading around the
chiral front, because of a breakdown of the perturbative
expansion in dissipative hydrodynamics. This can be seen
by expanding the equation of motion (3) beyond leading
order in δn (which we denote as n in the following for
simplicity): writing cðnÞ ≃ cþ c0n with c0 ≡ ∂c=∂n ¼
−ðν=2πÞðχ0=χ2Þ and χ0 ≡ ∂χ=∂n, one finds

∂xηx ¼ _nþ c∂xnþ 1

2
c0∂xn2 −D∂2

xnþ � � � : ð6Þ

In the absence of additional symmetries, there is no reason
for c0 to vanish and nonlinearities are generically expected,
see, e.g., Ref. [29]. Less relevant nonlinear terms coming
from the n dependence of the diffusivity D are omitted. We
included a noise term ηx in the constitutive relation, whose
symmetric Green’s function is constrained by the fluc-
tuation-dissipation theorem at leading order in gradients to
be hηxðt; xÞηxi ¼ 2DχTδðxÞδðtÞ þ � � �. To establish the
leading correction to ballistic propagation, it is convenient
to work in the frame of the chiral front x0 ¼ x − ct, t0 ¼ t
(or, equivalently, ω0 ¼ ωþ ck, k0 ¼ k). In these coordi-
nates the equation of motion

∂xηx ¼ ∂t0nþ 1

2
c0∂xn2 −D∂2

xnþ � � � ; ð7Þ

leads to a scalingω0 ∼ k2, so that η ∼ k3=2 and n ∼ k1=2. One
then finds that the interaction term c0 is relevant, and drives
the system to a new dissipative fixed point that is not
described by diffusive spreading around the chiral front (4).
In terms of the original coordinates, we expect ω − ck ∼ kz,
with z < 2 at the stable fixed point. In fact, Eq. (7) is
nothing but the KPZ equation, with charge mapping to the
slope of the interface n ¼ ∂xh, and the system is described
by Burgers-KPZ [17,18] universality with z ¼ 3=2. The
symmetric Green’s function is given by
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Gnnðω; kÞ ¼
χT
Dkz

gKPZ

�
ω − ck
Dkz

�
þ � � � ; ð8Þ

where � � � are terms that are subleading in the scaling
ðω − ck=kzÞ ∼ 1, and gKPZ is the KPZ scaling function
which is known numerically to high precision [30,31].
Gnnðω; kÞ is sharply peaked around ω ¼ ck with a width
of order Dkz; charge fluctuations therefore obey the
dispersion relation

ω ¼ ck − iDkz þ � � � : ð9Þ

KPZ scaling ties dissipation to thermodynamics: the
dimensionful constant D ∼ lengthz=time is fixed in terms
of parameters in the equation of motion by dimensional
analysis

D ¼
ffiffiffiffiffiffi
Tχ

p
jc0j ¼

ffiffiffiffiffi
T
χ3

s
jνj
2π

jχ0j: ð10Þ

This expression makes manifest three crucial ingredients
that led to KPZ universality around the chiral front: finite
temperature T, the anomaly ν, and thermodynamic non-
linearities through χ0 ¼ ∂χ=∂n.
Equation (8) leads to a universal prediction for transport

on the edge: the symmetric Green’s function controls
the dissipative optical conductivity at low frequencies
ωτth ≪ 1 through the fluctuation-dissipation theorem and
a Ward identity—one finds

σðωÞ ≃ lim
k→0

χω2

2Dk7=2
gKPZ

�
ω

Dk3=2

�
¼ a

χD4=3

ω1=3 ; ð11Þ

with a ≈ 0.417816 (see Supplemental Material [31]). While
singular conductivites are common in one-dimensional
momentum conserving systems [19,41,42], momentum
conservation was not assumed here. This singularity as
ω → 0 will be regulated in a system of finite length L, see
Ref. [41] for a discussion on subtleties with the Kubo
formula in this situation. Although limω→0 σðω; kÞ vanishes
for k ≠ 0, the relevant observable may be σðω; kÞ at
ω ∼ ck ∼ c=L [19,41], in which case one finds
σdc ∼ χD4=3ðL=cÞ1=3. This also leads to a thermal contri-
bution to the current noise Sth ¼ σdc=L ∼ L−2=3, which
vanishes more slowly than the standard thermal contribu-
tion Sth ∼ L−1. It would be interesting to explore the
relevance of this correction in shot noise measurements
in QH systems [43–45].
Nondissipative response such as the bulk Hall conduc-

tivity σbulkxy is controlled instead by the real part of the
retarded Green’s function ReGR

nn, which can be obtained
from ImGR

nn by analyticity. This is done in the
Supplemental Material [31], where we show that the
quantized bulk Hall conductivity (5) is unchanged.

Finally, long-range Coulomb interactions can be taken into
account as usual in the random phase approximation by
resumming a geometric series of diagrams involving
photons—this does not qualitatively change the dispersion
relation, which simply receives logarithmic corrections;
see, e.g., Ref. [13].
The fate of heat.—We now extend the discussion to

include the other hydrodynamic mode: heat, or energy.
Heat has less privileged a status than charge, since it can
leak out of the edge through phonons and will therefore
only be approximately conserved. However, the timescale
for heat loss may be parametrically longer than τth as it is
controlled by different physics—a possibility affirmed
by the experimental observation of the collective heat
mode [7]. Neglecting first thermoelectric effects, charge
and heat decouple and can be treated separately. A nonzero
bulk thermal Hall conductivity κxy then gives heat a finite
chiral speed of sound [4] cheat ¼ ðκxy=cVÞ, where cV is the
specific heat, and the analysis in the previous section holds
with heat replacing charge. This result is largely unaffected
by coupling between charge n and energy ε—expanding
the continuity relations as in Eq. (6) now yields a system of
KPZ equations,

∂tnaþCab∇nbþDab∇2nbþλabcnb∇ncþ���¼0; ð12Þ

with n1 ¼ n and n2 ¼ ε. As long as the velocity eigenval-
ues are distinct, going into the rest frame of any eigenmode
one finds that interactions with the other eigenmodes are
kinematically disfavored. One therefore expects two inde-
pendent KPZ modes around each chiral ballistic front—this
is indeed what is observed numerically [46,48].
One important exception is when the thermal Hall

conductivity vanishes κxy ¼ 0, so that the heat mode
does not propagate ballistically [4] (this happens, e.g.,
for ν ¼ 2=3). Although a linearized analysis would suggest
that heat then diffuses, its nonlinear coupling to the
fluctuating charge mode also leads to a breakdown of
diffusion in this case. This nonlinear coupling comes from
the fact that in a background field F0x ¼ Ex, the energy
continuity relation is changed to _εþ ∂xjεx ¼ Exjx, which,
using Eq. (2), fixes the leading term in the constitutive
relation for the energy current [49] jεx ¼ ðν=4πÞμ2 þ � � �.
The two modes that diagonalize the Cmatrix in Eq. (12) are
now δμ ¼ χ−1nnδnþ χ−1nε δε and δs ¼ ð1=TÞðδε − μδnÞ. The
former is still described by KPZ universality, with a
correlator of the form (8). Instead when κxy ¼ 0, entropy
fluctuations have a vanishing speed and self-coupling
λsss ¼ 0. However coupling to the KPZ mode λsμμ ≠ 0

leads to superdiffusion ωheat ∼ −ikzheat . Although the expo-
nent is not known analytically, a “mode coupling” approxi-
mation gives zheat ¼ 5=3 and seems consistent with
numerics (see Refs. [23,41] for reviews). This approxima-
tion yields again κ̄ðωÞ ∼ 1=ω1=3; however, soft heat modes
now lead to a more singular charge conductivity
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σðωÞ ∼ 1=ω2=5. It is interesting that soft fluctuations are
further enhanced in the ν ¼ 2=3 state, where experiments
have suggested higher sensitivity to finite system size [53].
Higher dimension: Surface chiral metals and chiral

magnetic effect.—Two reasons drive us to generalize the
theory above to higher dimensions: first, we will find that
the KPZ fixed point can be accessed perturbatively from the
upper critical dimension dc ¼ 2; second, chiral systems
with diffusive broadening naturally occur in higher dimen-
sions as well. In d ¼ 2 the theory we consider furnishes the
low-energy description of surface chiral metals [54,55].
These are boundaries of three-dimensional materials made
from layered QH systems—they exhibit propagation of a
chiral diffusive front in the direction of the layer and regular
diffusion in the transverse direction, which was shown to be
stable against localization [54]. In d ¼ 3, the theory
describes the hydrodynamics of a charge current subject
to the chiral magnetic effect in the presence of a back-
ground magnetic field (decoupling momentum and energy
fluctuations). The chiral magnetic effect [56] corresponds
to a nonvanishing equilibrium value of the charge current in
the presence of a magnetic field, and is due to the chiral
anomaly. This effect arises in condensed matter systems
such as Weyl semimetals [57,58], in heavy ion physics [59]
and astrophysics [60].
The common feature to all such systems is the presence

of a chiral front with diffusive broadening along a given
direction, which we label with x, and of ordinary diffusion
in the orthogonal directions, which we label with yA, where
A ¼ 2;…; d. Up to first order in gradients the constitutive
relations for the current are

jx ¼
ν

2π
μ − χDx∂xμ; jA ¼ −χD⊥∂Aμ; ð13Þ

where the chemical potential μ is an arbitrary function of
the charge density n. Working again in the frame of the
chiral front x0 ¼ x − ct, y0 ¼ y, t0 ¼ t, the conservation
equation for Eq. (13) reads

∂t0nþ 1

2
c0∂xn2 −Dij∂i∂jn ¼ ∂iη

i þ � � � ; ð14Þ

where Dij ¼ diagðDx;D⊥;…; D⊥Þ. The correlator of the
noise current ηi ¼ ðηx; ηAÞ is again fixed by thermal
equilibrium: hηiðt; x; yÞηji ¼ 2DijχTδðtÞδðxÞδðd−1ÞðyÞ. In
this frame, ω ∼ k2, implying that ηi ∼ kðd=2Þþ1, n ∼ kðd=2Þ,
and thus c0 scales as kð2−dÞ=2, i.e., the interaction becomes
marginal in d ¼ 2 and irrelevant in d > 2. This stochastic
system was first studied in Ref. [61] in the context of driven
diffusive systems, where the drive plays a crucial role in
enhancing hydrodynamic fluctuations. We emphasize that
our system is not driven: instead the anomaly enhances
fluctuations. To study the effects of fluctuations and
determine the RG fate in d ¼ 2 we implement the effective

field theory approach to hydrodynamics [40,62], reviewed
in the Supplemental Material [31]. This framework allows
us to perform a dynamical RG analysis keeping all the
symmetries manifest, and appropriately capturing contact
terms in correlation functions. The central object is the path
integral

Z ¼
Z

DnDφaeiS½n;φa�; ð15Þ

where φaðt; x; yAÞ is an auxiliary field, and can be related
to the noise currents in Eq. (14) following the Martin-
Siggia-Rose (MSR) formalism [63]. The action associated
to the stochastic equation (14) is given in the Supplemental
Material [31]. Renormalization can be studied as usual by
integrating out modes in a momentum shell M ≤ jk⃗j ≤ Λ.
We find that χ; c0; D⊥ do not renormalize. It is illuminating
to express the renormalization of Dx in terms of a rescaled
coupling. To this aim, we rescale ∂x → ∂x=

ffiffiffiffiffiffi
Dx

p
,

∂A → ∂A=
ffiffiffiffiffiffiffi
D⊥

p
, φa → φa=

ffiffiffiffiffiffi
Tχ

p
, n → n

ffiffiffiffiffiffi
Tχ

p
to canoni-

cally normalize the fields. Then the cubic coupling
becomes λ ¼ c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðχT=DxÞ
p

. The β function for λ is

βλ ¼ −
ε

2
λþ λ4

32πc0
ffiffiffiffiffiffiffiffiffiffiffiffi
D⊥χT

p ; ð16Þ

which shows that the coupling is marginally irrelevant in
d ¼ 2. For d ¼ 2 − ε, the diffusive fixed point with λ ¼ 0
is unstable, and the stable fixed point can be accessed
perturbatively: λ�3 ¼ 16πεc0

ffiffiffiffiffiffiffiffiffiffiffiffi
D⊥χT

p
. As d → 1, the fixed

point will approach the KPZ universality class. For d ≥ 2,
λ ¼ 0 becomes stable and is the only fixed point [64]. This
is summarized in Fig. 1. It is interesting that the generali-
zation to higher dimensions (14) is distinct from the one
natural for the KPZ equation, where interactions are instead
marginally relevant in d ¼ 2.
For surface chiral metals in d ¼ 2 where interactions are

marginally irrelevant, the chiral diffusive fixed point is
approached slowly and transport parameters run logarith-
mically. In this case one can solve the RG flow equa-
tion (16) and find the conductivity at low frequencies,

FIG. 1. Fixed points λ� as a function of spatial dimension d.
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σxxðωÞ ¼ χDxðωÞ ≃ χ

�
3χTc02

32π
ffiffiffiffiffiffiffi
D⊥

p log
1

ω

�
2=3

: ð17Þ

In d ¼ 3, pertaining to the chiral magnetic effect, the
coupling λ is irrelevant. As shown in the Supplemental
Material [31], one finds σxxðωÞ ∼ σxxð0Þ þ λ2ωð1=2Þ. This is
the same frequency power generated by fluctuation cor-
rections in three-dimensional momentum-conserving
systems.
Discussion.—We have shown that hydrodynamic fluc-

tuations on edges realizing the chiral anomaly lead to a
breakdown of diffusion, giving rise to singular low fre-
quency transport and anomalous damping of edge modes.
In particular, edge magnetoplasmons are predicted to be
anomalously damped, Eqs. (9), (10). The charge suscep-
tibility χ and χ0 ¼ ∂χ=∂n are nonuniversal but expected to
have weak field and temperature dependence. The linear
dependence of damping on filling ν for gapped bulks has
been widely observed experimentally, see, e.g., Refs. [5,6].
The temperature and wave vector dependence of damping
have been less systematically reported—the weak temper-
ature dependence of damping observed in graphene in
Ref. [10] is consistent with Eq. (10). To our knowledge
only Ref. [6] studied wave vector dependence; the depend-
ence they observe is between linear to quadratic, which
would neatly agree with Eq. (9). Moreover, the overall size
of damping observed is consistent with Eqs. (9), (10):
estimating χ0 ∼ ωc to be of order the bulk gap and χ ∼ 1=c,
one finds a quality factor Q ∼

ffiffiffiffiffiffiffiffiffiffi
ℏωT

p
=ωc ∼ 100 at

ω ∼ 20 MHz, consistent with Ref. [6]. However more
thorough investigation—which is well within experimental
reach—is needed to unequivocally confirm our prediction.
In the presence of edge reconstruction [65] with weak

interedge interactions, our results can, in principle, apply to
each edge (and perhaps most usefully to the outermost
one), with the appropriate anomaly. If interedge inter-
actions are strong enough, we instead expect only a single
collective charge and heat mode to be long lived.
Nonlinear charge fluctuations have been argued to lead

to a breakdown of the linearized edge picture even at T ¼ 0
in the absence of dissipation, where the Burger’s equation is
stabilized not by the diffusive term in Eq. (3) but by a
nondissipative two-derivative term (the Benjamin-Ono
equation) [29], whose coefficient is related to the bulk
Hall viscosity. This term leads to a nonanalytic correction
to the dispersion relation ω − ck ∼ kjkj—we expect this
nonanalyticity softens at finite temperature, and is then less
relevant than the diffusive term.
Although we have focused on charge and heat modes at

the edge of QH systems, the necessary ingredients—chiral
edge modes protected by a continuity relation—are realized
in a number of other systems, where similar conclusions
will hold for transport of charge, heat, or spin on the
boundary. These include gapped quantum spin liquids and
topological superconductors [66], quantum anomalous

Hall [67], and quantum spin Hall systems [68] (when spin
conservation is a good approximation).
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